File: papers100m_gcn_cugraph_multinode.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (390 lines) | stat: -rw-r--r-- 12,769 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Multi-node, multi-GPU example with WholeGraph feature storage.
# It is recommended that you download the dataset first before running.

# To run, use sbatch
# (i.e. sbatch -N2 -p <partition> -A <account> -J <job name>)
# with the script shown below:
#
# head_node_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
#
# (yes || true) | srun -l \
#        --container-image <container image> \
#        --container-mounts "$(pwd):/workspace","/raid:/raid" \
#          torchrun \
#          --nnodes 2 \
#          --nproc-per-node 8 \
#          --rdzv-backend c10d \
#          --rdzv-id 62 \
#          --rdzv-endpoint $head_node_addr:29505 \
#          /workspace/papers100m_gcn_cugraph_multinode.py \
#            --epochs 1 \
#            --dataset ogbn-papers100M \
#            --dataset_root /workspace/datasets \
#            --tempdir_root /raid/scratch

import argparse
import json
import os
import os.path as osp
import tempfile
import time
from datetime import timedelta

import torch
import torch.distributed as dist
import torch.nn.functional as F
from cugraph.gnn import (
    cugraph_comms_create_unique_id,
    cugraph_comms_init,
    cugraph_comms_shutdown,
)
from ogb.nodeproppred import PygNodePropPredDataset
from pylibwholegraph.torch.initialize import finalize as wm_finalize
from pylibwholegraph.torch.initialize import init as wm_init
from torch.nn.parallel import DistributedDataParallel

import torch_geometric
from torch_geometric.io import fs

# Allow computation on objects that are larger than GPU memory
# https://docs.rapids.ai/api/cudf/stable/developer_guide/library_design/#spilling-to-host-memory
os.environ['CUDF_SPILL'] = '1'

# Ensures that a CUDA context is not created on import of rapids.
# Allows pytorch to create the context instead
os.environ['RAPIDS_NO_INITIALIZE'] = '1'


def init_pytorch_worker(global_rank, local_rank, world_size, cugraph_id):
    import rmm

    rmm.reinitialize(
        devices=local_rank,
        managed_memory=True,
        pool_allocator=True,
    )

    import cupy

    cupy.cuda.Device(local_rank).use()
    from rmm.allocators.cupy import rmm_cupy_allocator

    cupy.cuda.set_allocator(rmm_cupy_allocator)

    from cugraph.testing.mg_utils import enable_spilling

    enable_spilling()

    torch.cuda.set_device(local_rank)

    cugraph_comms_init(rank=global_rank, world_size=world_size, uid=cugraph_id,
                       device=local_rank)

    wm_init(global_rank, world_size, local_rank, torch.cuda.device_count())


def partition_data(dataset, split_idx, edge_path, feature_path, label_path,
                   meta_path):
    data = dataset[0]

    os.makedirs(edge_path, exist_ok=True)
    for (r, e) in enumerate(data.edge_index.tensor_split(world_size, dim=1)):
        rank_path = osp.join(edge_path, f'rank={r}.pt')
        torch.save(
            e.clone(),
            rank_path,
        )

    os.makedirs(feature_path, exist_ok=True)
    for (r, f) in enumerate(torch.tensor_split(data.x, world_size)):
        rank_path = osp.join(feature_path, f'rank={r}_x.pt')
        torch.save(
            f.clone(),
            rank_path,
        )
    for (r, f) in enumerate(torch.tensor_split(data.y, world_size)):
        rank_path = osp.join(feature_path, f'rank={r}_y.pt')
        torch.save(
            f.clone(),
            rank_path,
        )

    os.makedirs(label_path, exist_ok=True)
    for (d, i) in split_idx.items():
        i_parts = torch.tensor_split(i, world_size)
        for r, i_part in enumerate(i_parts):
            rank_path = osp.join(label_path, f'rank={r}')
            os.makedirs(rank_path, exist_ok=True)
            torch.save(i_part, osp.join(rank_path, f'{d}.pt'))

    meta = dict(
        num_classes=int(dataset.num_classes),
        num_features=int(dataset.num_features),
        num_nodes=int(data.num_nodes),
    )
    with open(meta_path, 'w') as f:
        json.dump(meta, f)


def load_partitioned_data(rank, edge_path, feature_path, label_path, meta_path,
                          wg_mem_type):
    from cugraph_pyg.data import GraphStore, WholeFeatureStore

    graph_store = GraphStore(is_multi_gpu=True)
    feature_store = WholeFeatureStore(memory_type=wg_mem_type)

    with open(meta_path) as f:
        meta = json.load(f)

    split_idx = {}
    for split in ['train', 'test', 'valid']:
        path = osp.join(label_path, f'rank={rank}', f'{split}.pt')
        split_idx[split] = fs.torch_load(path)

    path = osp.join(feature_path, f'rank={rank}_x.pt')
    feature_store['node', 'x'] = fs.torch_load(path)
    path = osp.join(feature_path, f'rank={rank}_y.pt')
    feature_store['node', 'y'] = fs.torch_load(path)

    eix = fs.torch_load(osp.join(edge_path, f'rank={rank}.pt'))
    graph_store[dict(
        edge_type=('node', 'rel', 'node'),
        layout='coo',
        is_sorted=False,
        size=(meta['num_nodes'], meta['num_nodes']),
    )] = eix

    return (feature_store, graph_store), split_idx, meta


def run(global_rank, data, split_idx, world_size, device, model, epochs,
        batch_size, fan_out, num_classes, wall_clock_start, tempdir=None,
        num_layers=3):

    optimizer = torch.optim.Adam(model.parameters(), lr=0.01,
                                 weight_decay=0.0005)

    kwargs = dict(
        num_neighbors=[fan_out] * num_layers,
        batch_size=batch_size,
    )
    from cugraph_pyg.loader import NeighborLoader

    ix_train = split_idx['train'].cuda()
    train_path = osp.join(tempdir, f'train_{global_rank}')
    os.mkdir(train_path)
    train_loader = NeighborLoader(
        data,
        input_nodes=ix_train,
        directory=train_path,
        shuffle=True,
        drop_last=True,
        **kwargs,
    )

    ix_val = split_idx['valid'].cuda()
    val_path = osp.join(tempdir, f'val_{global_rank}')
    os.mkdir(val_path)
    val_loader = NeighborLoader(
        data,
        input_nodes=ix_val,
        directory=val_path,
        shuffle=True,
        drop_last=True,
        **kwargs,
    )

    ix_test = split_idx['test'].cuda()
    test_path = osp.join(tempdir, f'test_{global_rank}')
    os.mkdir(test_path)
    test_loader = NeighborLoader(
        data,
        input_nodes=ix_test,
        directory=test_path,
        shuffle=True,
        drop_last=True,
        local_seeds_per_call=80000,
        **kwargs,
    )

    dist.barrier()

    eval_steps = 1000
    warmup_steps = 20
    dist.barrier()
    torch.cuda.synchronize()

    if global_rank == 0:
        prep_time = time.perf_counter() - wall_clock_start
        print(f"Preparation time: {prep_time:.2f}s")

    for epoch in range(epochs):
        for i, batch in enumerate(train_loader):
            if i == warmup_steps:
                torch.cuda.synchronize()
                start = time.time()

            batch = batch.to(device)
            batch_size = batch.batch_size

            batch.y = batch.y.view(-1).to(torch.long)
            optimizer.zero_grad()
            out = model(batch.x, batch.edge_index)
            loss = F.cross_entropy(out[:batch_size], batch.y[:batch_size])
            loss.backward()
            optimizer.step()
            if global_rank == 0 and i % 10 == 0:
                print(f"Epoch: {epoch:02d}, Iteration: {i}, Loss: {loss:.4f}")
        nb = i + 1.0

        if global_rank == 0:
            print(f"Avg Training Iteration Time: "
                  f"{(time.time() - start) / (nb - warmup_steps):.4f} s/iter")

        with torch.no_grad():
            total_correct = total_examples = 0
            for i, batch in enumerate(val_loader):
                if i >= eval_steps:
                    break

                batch = batch.to(device)
                batch_size = batch.batch_size

                batch.y = batch.y.to(torch.long)
                out = model(batch.x, batch.edge_index)[:batch_size]

                pred = out.argmax(dim=-1)
                y = batch.y[:batch_size].view(-1).to(torch.long)

                total_correct += int((pred == y).sum())
                total_examples += y.size(0)

            acc_val = total_correct / total_examples
            if global_rank == 0:
                print(f"Validation Accuracy: {acc_val * 100:.2f}%", )

        torch.cuda.synchronize()

    with torch.no_grad():
        total_correct = total_examples = 0
        for i, batch in enumerate(test_loader):
            batch = batch.to(device)
            batch_size = batch.batch_size

            batch.y = batch.y.to(torch.long)
            out = model(batch.x, batch.edge_index)[:batch_size]

            pred = out.argmax(dim=-1)
            y = batch.y[:batch_size].view(-1).to(torch.long)

            total_correct += int((pred == y).sum())
            total_examples += y.size(0)

        acc_test = total_correct / total_examples
        if global_rank == 0:
            print(f"Test Accuracy: {acc_test * 100:.2f}%", )

    if global_rank == 0:
        total_time = time.perf_counter() - wall_clock_start
        print(f"Total Training Runtime: {total_time - prep_time}s")
        print(f"Total Program Runtime: {total_time}s")

    wm_finalize()
    cugraph_comms_shutdown()


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--hidden_channels', type=int, default=256)
    parser.add_argument('--num_layers', type=int, default=2)
    parser.add_argument('--lr', type=float, default=0.001)
    parser.add_argument('--epochs', type=int, default=4)
    parser.add_argument('--batch_size', type=int, default=1024)
    parser.add_argument('--fan_out', type=int, default=30)
    parser.add_argument('--dataset', type=str, default='ogbn-papers100M')
    parser.add_argument('--root', type=str, default='dataset')
    parser.add_argument('--tempdir_root', type=str, default=None)
    parser.add_argument('--skip_partition', action='store_true')
    parser.add_argument('--wg_mem_type', type=str, default='distributed')

    return parser.parse_args()


if __name__ == '__main__':
    args = parse_args()
    wall_clock_start = time.perf_counter()

    # Set a very high timeout so that PyTorch does not crash while
    # partitioning the data.
    dist.init_process_group('nccl', timeout=timedelta(minutes=60))
    world_size = dist.get_world_size()
    assert dist.is_initialized()

    global_rank = dist.get_rank()
    local_rank = int(os.environ['LOCAL_RANK'])
    device = torch.device(local_rank)

    print(
        f'Global rank: {global_rank},',
        f'Local Rank: {local_rank},',
        f'World size: {world_size}',
    )

    # Create the uid needed for cuGraph comms
    if global_rank == 0:
        cugraph_id = [cugraph_comms_create_unique_id()]
    else:
        cugraph_id = [None]
    dist.broadcast_object_list(cugraph_id, src=0, device=device)
    cugraph_id = cugraph_id[0]

    init_pytorch_worker(global_rank, local_rank, world_size, cugraph_id)

    edge_path = osp.join(args.root, f'{args.dataset}_eix_part')
    feature_path = osp.join(args.root, f'{args.dataset}_fea_part')
    label_path = osp.join(args.root, f'{args.dataset}_label_part')
    meta_path = osp.join(args.root, f'{args.dataset}_meta.json')

    # We partition the data to avoid loading it in every worker, which will
    # waste memory and can lead to an out of memory exception.
    # cugraph_pyg.GraphStore and cugraph_pyg.WholeFeatureStore are always
    # constructed from partitions of the edge index and features, respectively,
    # so this works well.
    if not args.skip_partition and global_rank == 0:
        print("Partitioning the data into equal size parts per worker")
        dataset = PygNodePropPredDataset(name=args.dataset, root=args.root)
        split_idx = dataset.get_idx_split()

        partition_data(
            dataset,
            split_idx,
            meta_path=meta_path,
            label_path=label_path,
            feature_path=feature_path,
            edge_path=edge_path,
        )

    dist.barrier()
    print("Loading partitioned data")
    data, split_idx, meta = load_partitioned_data(
        rank=global_rank,
        edge_path=edge_path,
        feature_path=feature_path,
        label_path=label_path,
        meta_path=meta_path,
        wg_mem_type=args.wg_mem_type,
    )
    dist.barrier()

    model = torch_geometric.nn.models.GCN(
        meta['num_features'],
        args.hidden_channels,
        args.num_layers,
        meta['num_classes'],
    ).to(device)
    model = DistributedDataParallel(model, device_ids=[local_rank])

    with tempfile.TemporaryDirectory(dir=args.tempdir_root) as tempdir:
        run(global_rank, data, split_idx, world_size, device, model,
            args.epochs, args.batch_size, args.fan_out, meta['num_classes'],
            wall_clock_start, tempdir, args.num_layers)