1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
"""Multi-node multi-GPU example on ogbn-papers100m.
Example way to run using srun:
srun -l -N<num_nodes> --ntasks-per-node=<ngpu_per_node> \
--container-name=cont --container-image=<image_url> \
--container-mounts=/ogb-papers100m/:/workspace/dataset
python3 path_to_script.py
"""
import os
import time
from typing import Optional
import torch
import torch.distributed as dist
import torch.nn.functional as F
from ogb.nodeproppred import PygNodePropPredDataset
from torch.nn.parallel import DistributedDataParallel
from torchmetrics import Accuracy
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import GCN
def get_num_workers() -> int:
num_workers = None
if hasattr(os, "sched_getaffinity"):
try:
num_workers = len(os.sched_getaffinity(0)) // 2
except Exception:
pass
if num_workers is None:
num_workers = os.cpu_count() // 2
return num_workers
def run(world_size, data, split_idx, model, acc, wall_clock_start):
local_id = int(os.environ['LOCAL_RANK'])
rank = torch.distributed.get_rank()
torch.cuda.set_device(local_id)
device = torch.device(local_id)
if rank == 0:
print(f'Using {nprocs} GPUs...')
split_idx['train'] = split_idx['train'].split(
split_idx['train'].size(0) // world_size, dim=0)[rank].clone()
split_idx['valid'] = split_idx['valid'].split(
split_idx['valid'].size(0) // world_size, dim=0)[rank].clone()
split_idx['test'] = split_idx['test'].split(
split_idx['test'].size(0) // world_size, dim=0)[rank].clone()
model = DistributedDataParallel(model.to(device), device_ids=[local_id])
optimizer = torch.optim.Adam(model.parameters(), lr=0.001,
weight_decay=5e-4)
kwargs = dict(
data=data,
batch_size=1024,
num_workers=get_num_workers(),
num_neighbors=[30, 30],
)
train_loader = NeighborLoader(
input_nodes=split_idx['train'],
shuffle=True,
drop_last=True,
**kwargs,
)
val_loader = NeighborLoader(input_nodes=split_idx['valid'], **kwargs)
test_loader = NeighborLoader(input_nodes=split_idx['test'], **kwargs)
val_steps = 1000
warmup_steps = 100
acc = acc.to(device)
dist.barrier()
torch.cuda.synchronize()
if rank == 0:
prep_time = round(time.perf_counter() - wall_clock_start, 2)
print("Total time before training begins (prep_time)=", prep_time,
"seconds")
print("Beginning training...")
for epoch in range(1, 21):
model.train()
for i, batch in enumerate(train_loader):
if i == warmup_steps:
torch.cuda.synchronize()
start = time.time()
batch = batch.to(device)
optimizer.zero_grad()
y = batch.y[:batch.batch_size].view(-1).to(torch.long)
out = model(batch.x, batch.edge_index)[:batch.batch_size]
loss = F.cross_entropy(out, y)
loss.backward()
optimizer.step()
if rank == 0 and i % 10 == 0:
print(f'Epoch: {epoch:02d}, Iteration: {i}, Loss: {loss:.4f}')
dist.barrier()
torch.cuda.synchronize()
if rank == 0:
sec_per_iter = (time.time() - start) / (i + 1 - warmup_steps)
print(f"Avg Training Iteration Time: {sec_per_iter:.6f} s/iter")
@torch.no_grad()
def test(loader: NeighborLoader, num_steps: Optional[int] = None):
model.eval()
for j, batch in enumerate(loader):
if num_steps is not None and j >= num_steps:
break
batch = batch.to(device)
out = model(batch.x, batch.edge_index)[:batch.batch_size]
y = batch.y[:batch.batch_size].view(-1).to(torch.long)
acc(out, y)
acc_sum = acc.compute()
return acc_sum
eval_acc = test(val_loader, num_steps=val_steps)
if rank == 0:
print(f"Val Accuracy: {eval_acc:.4f}%", )
acc.reset()
dist.barrier()
test_acc = test(test_loader)
if rank == 0:
print(f"Test Accuracy: {test_acc:.4f}%", )
dist.barrier()
acc.reset()
torch.cuda.synchronize()
if rank == 0:
total_time = round(time.perf_counter() - wall_clock_start, 2)
print("Total Program Runtime (total_time) =", total_time, "seconds")
print("total_time - prep_time =", total_time - prep_time, "seconds")
if __name__ == '__main__':
wall_clock_start = time.perf_counter()
# Setup multi-node:
torch.distributed.init_process_group("nccl")
nprocs = dist.get_world_size()
assert dist.is_initialized(), "Distributed cluster not initialized"
dataset = PygNodePropPredDataset(name='ogbn-papers100M')
split_idx = dataset.get_idx_split()
model = GCN(dataset.num_features, 256, 2, dataset.num_classes)
acc = Accuracy(task="multiclass", num_classes=dataset.num_classes)
data = dataset[0]
data.y = data.y.reshape(-1)
run(nprocs, data, split_idx, model, acc, wall_clock_start)
|