File: papers100m_gcn_multinode.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (151 lines) | stat: -rw-r--r-- 5,171 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""Multi-node multi-GPU example on ogbn-papers100m.

Example way to run using srun:
srun -l -N<num_nodes> --ntasks-per-node=<ngpu_per_node> \
--container-name=cont --container-image=<image_url> \
--container-mounts=/ogb-papers100m/:/workspace/dataset
python3 path_to_script.py
"""
import os
import time
from typing import Optional

import torch
import torch.distributed as dist
import torch.nn.functional as F
from ogb.nodeproppred import PygNodePropPredDataset
from torch.nn.parallel import DistributedDataParallel
from torchmetrics import Accuracy

from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import GCN


def get_num_workers() -> int:
    num_workers = None
    if hasattr(os, "sched_getaffinity"):
        try:
            num_workers = len(os.sched_getaffinity(0)) // 2
        except Exception:
            pass
    if num_workers is None:
        num_workers = os.cpu_count() // 2
    return num_workers


def run(world_size, data, split_idx, model, acc, wall_clock_start):
    local_id = int(os.environ['LOCAL_RANK'])
    rank = torch.distributed.get_rank()
    torch.cuda.set_device(local_id)
    device = torch.device(local_id)
    if rank == 0:
        print(f'Using {nprocs} GPUs...')

    split_idx['train'] = split_idx['train'].split(
        split_idx['train'].size(0) // world_size, dim=0)[rank].clone()
    split_idx['valid'] = split_idx['valid'].split(
        split_idx['valid'].size(0) // world_size, dim=0)[rank].clone()
    split_idx['test'] = split_idx['test'].split(
        split_idx['test'].size(0) // world_size, dim=0)[rank].clone()

    model = DistributedDataParallel(model.to(device), device_ids=[local_id])
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001,
                                 weight_decay=5e-4)

    kwargs = dict(
        data=data,
        batch_size=1024,
        num_workers=get_num_workers(),
        num_neighbors=[30, 30],
    )

    train_loader = NeighborLoader(
        input_nodes=split_idx['train'],
        shuffle=True,
        drop_last=True,
        **kwargs,
    )
    val_loader = NeighborLoader(input_nodes=split_idx['valid'], **kwargs)
    test_loader = NeighborLoader(input_nodes=split_idx['test'], **kwargs)

    val_steps = 1000
    warmup_steps = 100
    acc = acc.to(device)
    dist.barrier()
    torch.cuda.synchronize()
    if rank == 0:
        prep_time = round(time.perf_counter() - wall_clock_start, 2)
        print("Total time before training begins (prep_time)=", prep_time,
              "seconds")
        print("Beginning training...")

    for epoch in range(1, 21):
        model.train()
        for i, batch in enumerate(train_loader):
            if i == warmup_steps:
                torch.cuda.synchronize()
                start = time.time()
            batch = batch.to(device)
            optimizer.zero_grad()
            y = batch.y[:batch.batch_size].view(-1).to(torch.long)
            out = model(batch.x, batch.edge_index)[:batch.batch_size]
            loss = F.cross_entropy(out, y)
            loss.backward()
            optimizer.step()

            if rank == 0 and i % 10 == 0:
                print(f'Epoch: {epoch:02d}, Iteration: {i}, Loss: {loss:.4f}')

        dist.barrier()
        torch.cuda.synchronize()
        if rank == 0:
            sec_per_iter = (time.time() - start) / (i + 1 - warmup_steps)
            print(f"Avg Training Iteration Time: {sec_per_iter:.6f} s/iter")

        @torch.no_grad()
        def test(loader: NeighborLoader, num_steps: Optional[int] = None):
            model.eval()
            for j, batch in enumerate(loader):
                if num_steps is not None and j >= num_steps:
                    break
                batch = batch.to(device)
                out = model(batch.x, batch.edge_index)[:batch.batch_size]
                y = batch.y[:batch.batch_size].view(-1).to(torch.long)
                acc(out, y)
            acc_sum = acc.compute()
            return acc_sum

        eval_acc = test(val_loader, num_steps=val_steps)
        if rank == 0:
            print(f"Val Accuracy: {eval_acc:.4f}%", )

        acc.reset()
        dist.barrier()

    test_acc = test(test_loader)
    if rank == 0:
        print(f"Test Accuracy: {test_acc:.4f}%", )

    dist.barrier()
    acc.reset()
    torch.cuda.synchronize()

    if rank == 0:
        total_time = round(time.perf_counter() - wall_clock_start, 2)
        print("Total Program Runtime (total_time) =", total_time, "seconds")
        print("total_time - prep_time =", total_time - prep_time, "seconds")


if __name__ == '__main__':
    wall_clock_start = time.perf_counter()
    # Setup multi-node:
    torch.distributed.init_process_group("nccl")
    nprocs = dist.get_world_size()
    assert dist.is_initialized(), "Distributed cluster not initialized"
    dataset = PygNodePropPredDataset(name='ogbn-papers100M')
    split_idx = dataset.get_idx_split()
    model = GCN(dataset.num_features, 256, 2, dataset.num_classes)
    acc = Accuracy(task="multiclass", num_classes=dataset.num_classes)
    data = dataset[0]
    data.y = data.y.reshape(-1)
    run(nprocs, data, split_idx, model, acc, wall_clock_start)