File: pcqm4m_ogb.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (645 lines) | stat: -rw-r--r-- 23,398 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
# Code adapted from OGB.
# https://github.com/snap-stanford/ogb/tree/master/examples/lsc/pcqm4m-v2
import argparse
import os

import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.functional as F
import torch.optim as optim
from ogb.graphproppred.mol_encoder import AtomEncoder, BondEncoder
from torch.nn.parallel import DistributedDataParallel
from torch.optim.lr_scheduler import StepLR
from torch.utils.tensorboard import SummaryWriter
from tqdm.auto import tqdm

from torch_geometric.data import Data
from torch_geometric.datasets import PCQM4Mv2
from torch_geometric.io import fs
from torch_geometric.loader import DataLoader
from torch_geometric.nn import (
    GlobalAttention,
    MessagePassing,
    Set2Set,
    global_add_pool,
    global_max_pool,
    global_mean_pool,
)
from torch_geometric.utils import degree

try:
    from ogb.lsc import PCQM4Mv2Evaluator, PygPCQM4Mv2Dataset
except ImportError as e:
    raise ImportError(
        "`PygPCQM4Mv2Dataset` requires rdkit (`pip install rdkit`)") from e

from ogb.utils import smiles2graph


def ogb_from_smiles_wrapper(smiles, *args, **kwargs):
    """Returns `torch_geometric.data.Data` object from smiles while
    `ogb.utils.smiles2graph` returns a dict of np arrays.
    """
    data_dict = smiles2graph(smiles, *args, **kwargs)
    return Data(
        x=torch.from_numpy(data_dict['node_feat']),
        edge_index=torch.from_numpy(data_dict['edge_index']),
        edge_attr=torch.from_numpy(data_dict['edge_feat']),
        smiles=smiles,
    )


class GINConv(MessagePassing):
    def __init__(self, emb_dim):
        r"""GINConv.

        Args:
            emb_dim (int): node embedding dimensionality
        """
        super().__init__(aggr="add")
        self.mlp = torch.nn.Sequential(
            torch.nn.Linear(emb_dim, emb_dim),
            torch.nn.BatchNorm1d(emb_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(emb_dim, emb_dim),
        )
        self.eps = torch.nn.Parameter(torch.Tensor([0]))
        self.bond_encoder = BondEncoder(emb_dim=emb_dim)

    def forward(self, x, edge_index, edge_attr):
        edge_embedding = self.bond_encoder(edge_attr)
        return self.mlp(
            (1 + self.eps) * x +
            self.propagate(edge_index, x=x, edge_attr=edge_embedding))

    def message(self, x_j, edge_attr):
        return F.relu(x_j + edge_attr)

    def update(self, aggr_out):
        return aggr_out


class GCNConv(MessagePassing):
    def __init__(self, emb_dim):
        super().__init__(aggr='add')
        self.linear = torch.nn.Linear(emb_dim, emb_dim)
        self.root_emb = torch.nn.Embedding(1, emb_dim)
        self.bond_encoder = BondEncoder(emb_dim=emb_dim)

    def forward(self, x, edge_index, edge_attr):
        x = self.linear(x)
        edge_embedding = self.bond_encoder(edge_attr)
        row, col = edge_index
        deg = degree(row, x.size(0), dtype=x.dtype) + 1
        deg_inv_sqrt = deg.pow(-0.5)
        deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
        norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]
        return self.propagate(
            edge_index, x=x, edge_attr=edge_embedding, norm=norm
        ) + F.relu(x + self.root_emb.weight) * 1. / deg.view(-1, 1)

    def message(self, x_j, edge_attr, norm):
        return norm.view(-1, 1) * F.relu(x_j + edge_attr)

    def update(self, aggr_out):
        return aggr_out


class GNNNode(torch.nn.Module):
    def __init__(self, num_layers, emb_dim, drop_ratio=0.5, JK="last",
                 residual=False, gnn_type='gin'):
        r"""GNN Node.

        Args:
            emb_dim (int): node embedding dimensionality.
            num_layers (int): number of GNN message passing layers.
            residual (bool): whether to add residual connection.
            drop_ratio (float): dropout ratio.
            JK (str): "last" or "sum" to choose JK concat strat.
            residual (bool): Wether or not to add the residual
            gnn_type (str): Type of GNN to use.
        """
        super().__init__()
        if num_layers < 2:
            raise ValueError("Number of GNN layers must be greater than 1.")

        self.num_layers = num_layers
        self.drop_ratio = drop_ratio
        self.JK = JK
        self.residual = residual
        self.atom_encoder = AtomEncoder(emb_dim)
        self.convs = torch.nn.ModuleList()
        self.batch_norms = torch.nn.ModuleList()
        for _ in range(num_layers):
            if gnn_type == 'gin':
                self.convs.append(GINConv(emb_dim))
            elif gnn_type == 'gcn':
                self.convs.append(GCNConv(emb_dim))
            else:
                raise ValueError(f'Undefined GNN type called {gnn_type}')

            self.batch_norms.append(torch.nn.BatchNorm1d(emb_dim))

    def forward(self, batched_data):
        x = batched_data.x
        edge_index = batched_data.edge_index
        edge_attr = batched_data.edge_attr

        # compute input node embedding
        h_list = [self.atom_encoder(x)]
        for layer in range(self.num_layers):
            h = self.convs[layer](h_list[layer], edge_index, edge_attr)
            h = self.batch_norms[layer](h)

            if layer == self.num_layers - 1:
                # remove relu for the last layer
                h = F.dropout(h, self.drop_ratio, training=self.training)
            else:
                h = F.dropout(F.relu(h), self.drop_ratio,
                              training=self.training)

            if self.residual:
                h += h_list[layer]

            h_list.append(h)

        # Different implementations of Jk-concat
        if self.JK == "last":
            node_representation = h_list[-1]
        elif self.JK == "sum":
            node_representation = 0
            for layer in range(self.num_layers + 1):
                node_representation += h_list[layer]

        return node_representation


class GNNNodeVirtualNode(torch.nn.Module):
    """Outputs node representations."""
    def __init__(self, num_layers, emb_dim, drop_ratio=0.5, JK="last",
                 residual=False, gnn_type='gin'):
        super().__init__()
        if num_layers < 2:
            raise ValueError("Number of GNN layers must be greater than 1.")

        self.num_layers = num_layers
        self.drop_ratio = drop_ratio
        self.JK = JK
        self.residual = residual
        self.atom_encoder = AtomEncoder(emb_dim)

        # set the initial virtual node embedding to 0.
        self.virtualnode_embedding = torch.nn.Embedding(1, emb_dim)
        torch.nn.init.constant_(self.virtualnode_embedding.weight.data, 0)

        self.convs = torch.nn.ModuleList()
        self.batch_norms = torch.nn.ModuleList()
        self.mlp_virtualnode_list = torch.nn.ModuleList()
        for _ in range(num_layers):
            if gnn_type == 'gin':
                self.convs.append(GINConv(emb_dim))
            elif gnn_type == 'gcn':
                self.convs.append(GCNConv(emb_dim))
            else:
                raise ValueError('Undefined GNN type called {gnn_type}')

            self.batch_norms.append(torch.nn.BatchNorm1d(emb_dim))

        for _ in range(num_layers - 1):
            self.mlp_virtualnode_list.append(
                torch.nn.Sequential(
                    torch.nn.Linear(emb_dim, emb_dim),
                    torch.nn.BatchNorm1d(emb_dim),
                    torch.nn.ReLU(),
                    torch.nn.Linear(emb_dim, emb_dim),
                    torch.nn.BatchNorm1d(emb_dim),
                    torch.nn.ReLU(),
                ))

    def forward(self, batched_data):
        x = batched_data.x
        edge_index = batched_data.edge_index
        edge_attr = batched_data.edge_attr
        batch = batched_data.batch

        # virtual node embeddings for graphs
        virtualnode_embedding = self.virtualnode_embedding(
            torch.zeros(batch[-1].item() + 1).to(edge_index.dtype).to(
                edge_index.device))

        h_list = [self.atom_encoder(x)]
        for layer in range(self.num_layers):
            # add message from virtual nodes to graph nodes
            h_list[layer] = h_list[layer] + virtualnode_embedding[batch]

            # Message passing among graph nodes
            h = self.convs[layer](h_list[layer], edge_index, edge_attr)

            h = self.batch_norms[layer](h)
            if layer == self.num_layers - 1:
                # remove relu for the last layer
                h = F.dropout(h, self.drop_ratio, training=self.training)
            else:
                h = F.dropout(F.relu(h), self.drop_ratio,
                              training=self.training)

            if self.residual:
                h = h + h_list[layer]

            h_list.append(h)

            # update the virtual nodes
            if layer < self.num_layers - 1:
                # add message from graph nodes to virtual nodes
                virtualnode_embedding_temp = global_add_pool(
                    h_list[layer], batch) + virtualnode_embedding
                # transform virtual nodes using MLP

                if self.residual:
                    virtualnode_embedding = virtualnode_embedding + F.dropout(
                        self.mlp_virtualnode_list[layer]
                        (virtualnode_embedding_temp), self.drop_ratio,
                        training=self.training)
                else:
                    virtualnode_embedding = F.dropout(
                        self.mlp_virtualnode_list[layer](
                            virtualnode_embedding_temp), self.drop_ratio,
                        training=self.training)

        # Different implementations of Jk-concat
        if self.JK == "last":
            node_representation = h_list[-1]
        elif self.JK == "sum":
            node_representation = 0
            for layer in range(self.num_layers + 1):
                node_representation += h_list[layer]

        return node_representation


class GNN(torch.nn.Module):
    def __init__(
        self,
        num_tasks=1,
        num_layers=5,
        emb_dim=300,
        gnn_type='gin',
        virtual_node=True,
        residual=False,
        drop_ratio=0,
        JK="last",
        graph_pooling="sum",
    ):
        r"""GNN.

        Args:
            num_tasks (int): number of labels to be predicted
            num_layers (int): number of gnn layers.
            emb_dim (int): embedding dim to use.
            gnn_type (str): Type of GNN to use.
            virtual_node (bool): whether to add virtual node or not.
            residual (bool): Wether or not to add the residual
            drop_ratio (float): dropout ratio.
            JK (str): "last" or "sum" to choose JK concat strat.
            graph_pooling (str): Graph pooling strat to use.
        """
        super().__init__()
        if num_layers < 2:
            raise ValueError("Number of GNN layers must be greater than 1.")

        self.num_layers = num_layers
        self.drop_ratio = drop_ratio
        self.JK = JK
        self.emb_dim = emb_dim
        self.num_tasks = num_tasks
        self.graph_pooling = graph_pooling
        if virtual_node:
            self.gnn_node = GNNNodeVirtualNode(
                num_layers,
                emb_dim,
                JK=JK,
                drop_ratio=drop_ratio,
                residual=residual,
                gnn_type=gnn_type,
            )
        else:
            self.gnn_node = GNNNode(
                num_layers,
                emb_dim,
                JK=JK,
                drop_ratio=drop_ratio,
                residual=residual,
                gnn_type=gnn_type,
            )

        # Pooling function to generate whole-graph embeddings
        if self.graph_pooling == "sum":
            self.pool = global_add_pool
        elif self.graph_pooling == "mean":
            self.pool = global_mean_pool
        elif self.graph_pooling == "max":
            self.pool = global_max_pool
        elif self.graph_pooling == "attention":
            self.pool = GlobalAttention(gate_nn=torch.nn.Sequential(
                torch.nn.Linear(emb_dim, emb_dim),
                torch.nn.BatchNorm1d(emb_dim),
                torch.nn.ReLU(),
                torch.nn.Linear(emb_dim, 1),
            ))
        elif self.graph_pooling == "set2set":
            self.pool = Set2Set(emb_dim, processing_steps=2)
        else:
            raise ValueError("Invalid graph pooling type.")

        if graph_pooling == "set2set":
            self.graph_pred_linear = torch.nn.Linear(2 * emb_dim, num_tasks)
        else:
            self.graph_pred_linear = torch.nn.Linear(emb_dim, num_tasks)

    def forward(self, batched_data):
        h_node = self.gnn_node(batched_data)
        h_graph = self.pool(h_node, batched_data.batch)
        output = self.graph_pred_linear(h_graph)
        if self.training:
            return output
        else:
            # At inference time, we clamp the value between 0 and 20
            return torch.clamp(output, min=0, max=20)


def train(model, rank, device, loader, optimizer):
    model.train()
    reg_criterion = torch.nn.L1Loss()
    loss_accum = 0.0
    for step, batch in enumerate(
            tqdm(loader, desc="Training", disable=(rank > 0))):
        batch = batch.to(device)
        pred = model(batch).view(-1, )
        optimizer.zero_grad()
        loss = reg_criterion(pred, batch.y)
        loss.backward()
        optimizer.step()
        loss_accum += loss.detach().cpu().item()
    return loss_accum / (step + 1)


def eval(model, device, loader, evaluator):
    model.eval()
    y_true = []
    y_pred = []
    for batch in tqdm(loader, desc="Evaluating"):
        batch = batch.to(device)
        with torch.no_grad():
            pred = model(batch).view(-1, )

        y_true.append(batch.y.view(pred.shape).detach().cpu())
        y_pred.append(pred.detach().cpu())

    y_true = torch.cat(y_true, dim=0)
    y_pred = torch.cat(y_pred, dim=0)
    input_dict = {"y_true": y_true, "y_pred": y_pred}
    return evaluator.eval(input_dict)["mae"]


def test(model, device, loader):
    model.eval()
    y_pred = []
    for batch in tqdm(loader, desc="Testing"):
        batch = batch.to(device)
        with torch.no_grad():
            pred = model(batch).view(-1, )

        y_pred.append(pred.detach().cpu())

    y_pred = torch.cat(y_pred, dim=0)
    return y_pred


def run(rank, dataset, args):
    num_devices = args.num_devices
    device = torch.device(
        "cuda:" + str(rank)) if num_devices > 0 else torch.device("cpu")

    if num_devices > 1:
        os.environ["MASTER_ADDR"] = "localhost"
        os.environ["MASTER_PORT"] = "12355"
        dist.init_process_group("nccl", rank=rank, world_size=num_devices)

    if args.on_disk_dataset:
        train_idx = torch.arange(len(dataset.indices()))
    else:
        split_idx = dataset.get_idx_split()
        train_idx = split_idx["train"]

    if num_devices > 1:
        train_idx = train_idx.split(train_idx.size(0) // num_devices)[rank]

    if args.train_subset:
        subset_ratio = 0.1
        n = len(train_idx)
        subset_idx = torch.randperm(n)[:int(subset_ratio * n)]
        train_dataset = dataset[train_idx[subset_idx]]
    else:
        train_dataset = dataset[train_idx]

    train_loader = DataLoader(
        train_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.num_workers,
    )

    if rank == 0:
        if args.on_disk_dataset:
            valid_dataset = PCQM4Mv2(root='on_disk_dataset/', split="val",
                                     from_smiles_func=ogb_from_smiles_wrapper)
            test_dev_dataset = PCQM4Mv2(
                root='on_disk_dataset/', split="test",
                from_smiles_func=ogb_from_smiles_wrapper)
            test_challenge_dataset = PCQM4Mv2(
                root='on_disk_dataset/', split="holdout",
                from_smiles_func=ogb_from_smiles_wrapper)
        else:
            valid_dataset = dataset[split_idx["valid"]]
            test_dev_dataset = dataset[split_idx["test-dev"]]
            test_challenge_dataset = dataset[split_idx["test-challenge"]]

        valid_loader = DataLoader(
            valid_dataset,
            batch_size=args.batch_size,
            shuffle=False,
            num_workers=args.num_workers,
        )
        if args.save_test_dir != '':
            testdev_loader = DataLoader(
                test_dev_dataset,
                batch_size=args.batch_size,
                shuffle=False,
                num_workers=args.num_workers,
            )
            testchallenge_loader = DataLoader(
                test_challenge_dataset,
                batch_size=args.batch_size,
                shuffle=False,
                num_workers=args.num_workers,
            )

        if args.checkpoint_dir != '':
            os.makedirs(args.checkpoint_dir, exist_ok=True)

        evaluator = PCQM4Mv2Evaluator()

    gnn_type, virtual_node = args.gnn.split('-')
    model = GNN(
        gnn_type=gnn_type,
        virtual_node=virtual_node,
        num_layers=args.num_layers,
        emb_dim=args.emb_dim,
        drop_ratio=args.drop_ratio,
        graph_pooling=args.graph_pooling,
    )
    if num_devices > 0:
        model = model.to(rank)
    if num_devices > 1:
        model = DistributedDataParallel(model, device_ids=[rank])

    optimizer = optim.Adam(model.parameters(), lr=0.001)

    if args.log_dir != '':
        writer = SummaryWriter(log_dir=args.log_dir)

    best_valid_mae = 1000

    if args.train_subset:
        scheduler = StepLR(optimizer, step_size=300, gamma=0.25)
        args.epochs = 1000
    else:
        scheduler = StepLR(optimizer, step_size=30, gamma=0.25)

    current_epoch = 1

    checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint.pt')
    if os.path.isfile(checkpoint_path):
        checkpoint = fs.torch_load(checkpoint_path)
        current_epoch = checkpoint['epoch'] + 1
        model.load_state_dict(checkpoint['model_state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
        best_valid_mae = checkpoint['best_val_mae']
        print(f"Found checkpoint, resume training at epoch {current_epoch}")

    for epoch in range(current_epoch, args.epochs + 1):
        train_mae = train(model, rank, device, train_loader, optimizer)

        if num_devices > 1:
            dist.barrier()

        if rank == 0:
            valid_mae = eval(
                model.module if isinstance(model, DistributedDataParallel) else
                model, device, valid_loader, evaluator)

            print(f"Epoch {epoch:02d}, "
                  f"Train MAE: {train_mae:.4f}, "
                  f"Val MAE: {valid_mae:.4f}")

            if args.log_dir != '':
                writer.add_scalar('valid/mae', valid_mae, epoch)
                writer.add_scalar('train/mae', train_mae, epoch)

            if valid_mae < best_valid_mae:
                best_valid_mae = valid_mae
                if args.checkpoint_dir != '':
                    checkpoint = {
                        'epoch': epoch,
                        'model_state_dict': model.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict(),
                        'scheduler_state_dict': scheduler.state_dict(),
                        'best_val_mae': best_valid_mae,
                    }
                    torch.save(checkpoint, checkpoint_path)

                if args.save_test_dir != '':
                    test_model = model.module if isinstance(
                        model, DistributedDataParallel) else model

                    testdev_pred = test(test_model, device, testdev_loader)
                    evaluator.save_test_submission(
                        {'y_pred': testdev_pred.cpu().detach().numpy()},
                        args.save_test_dir,
                        mode='test-dev',
                    )

                    testchallenge_pred = test(test_model, device,
                                              testchallenge_loader)
                    evaluator.save_test_submission(
                        {'y_pred': testchallenge_pred.cpu().detach().numpy()},
                        args.save_test_dir,
                        mode='test-challenge',
                    )

            print(f'Best validation MAE so far: {best_valid_mae}')

        if num_devices > 1:
            dist.barrier()

        scheduler.step()

    if rank == 0 and args.log_dir != '':
        writer.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description='GNN baselines on pcqm4m with Pytorch Geometrics',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--gnn', type=str, default='gin-virtual',
                        choices=['gin', 'gin-virtual', 'gcn',
                                 'gcn-virtual'], help='GNN architecture')
    parser.add_argument('--graph_pooling', type=str, default='sum',
                        help='graph pooling strategy mean or sum')
    parser.add_argument('--drop_ratio', type=float, default=0,
                        help='dropout ratio')
    parser.add_argument('--num_layers', type=int, default=5,
                        help='number of GNN message passing layers')
    parser.add_argument('--emb_dim', type=int, default=600,
                        help='dimensionality of hidden units in GNNs')
    parser.add_argument('--train_subset', action='store_true')
    parser.add_argument('--batch_size', type=int, default=256,
                        help='input batch size for training')
    parser.add_argument('--epochs', type=int, default=100,
                        help='number of epochs to train')
    parser.add_argument('--num_workers', type=int, default=0,
                        help='number of workers')
    parser.add_argument('--log_dir', type=str, default="",
                        help='tensorboard log directory')
    parser.add_argument('--checkpoint_dir', type=str, default='',
                        help='directory to save checkpoint')
    parser.add_argument('--save_test_dir', type=str, default='',
                        help='directory to save test submission file')
    parser.add_argument('--num_devices', type=int, default='1',
                        help="Number of GPUs, if 0 runs on the CPU")
    parser.add_argument('--on_disk_dataset', action='store_true')
    args = parser.parse_args()

    available_gpus = torch.cuda.device_count() if torch.cuda.is_available(
    ) else 0
    if args.num_devices > available_gpus:
        if available_gpus == 0:
            print("No GPUs available, running w/ CPU...")
        else:
            raise ValueError(f"Cannot train with {args.num_devices} GPUs: "
                             f"available GPUs count {available_gpus}")

    # automatic dataloading and splitting
    if args.on_disk_dataset:
        dataset = PCQM4Mv2(root='on_disk_dataset/', split='train',
                           from_smiles_func=ogb_from_smiles_wrapper)
    else:
        dataset = PygPCQM4Mv2Dataset(root='dataset/')

    if args.num_devices > 1:
        mp.spawn(run, args=(dataset, args), nprocs=args.num_devices, join=True)
    else:
        run(0, dataset, args)