1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
import argparse
import os
import os.path as osp
import tempfile
import cupy
import rmm
import torch
from rmm.allocators.cupy import rmm_cupy_allocator
from rmm.allocators.torch import rmm_torch_allocator
# Must change allocators immediately upon import
# or else other imports will cause memory to be
# allocated and prevent changing the allocator
rmm.reinitialize(devices=[0], pool_allocator=True, managed_memory=True)
cupy.cuda.set_allocator(rmm_cupy_allocator)
torch.cuda.memory.change_current_allocator(rmm_torch_allocator)
import cugraph_pyg # noqa
import torch.nn.functional as F # noqa
# Enable cudf spilling to save gpu memory
from cugraph.testing.mg_utils import enable_spilling # noqa
from cugraph_pyg.loader import NeighborLoader # noqa
enable_spilling()
from ogb.nodeproppred import PygNodePropPredDataset # noqa
from tqdm import tqdm # noqa
from torch_geometric.nn import SAGEConv # noqa
from torch_geometric.utils import to_undirected # noqa
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--batch_size', type=int, default=1024)
parser.add_argument('--num_neighbors', type=int, default=10)
parser.add_argument('--channels', type=int, default=256)
parser.add_argument('--lr', type=float, default=0.003)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--num_workers', type=int, default=12)
parser.add_argument('--root', type=str, default=None)
parser.add_argument('--tempdir_root', type=str, default=None)
args = parser.parse_args()
root = args.root
if root is None:
root = osp.dirname(osp.realpath(__file__))
root = osp.join(root, '..', 'data', 'papers100')
dataset = PygNodePropPredDataset('ogbn-papers100M', root)
split_idx = dataset.get_idx_split()
data = dataset[0]
data.edge_index = to_undirected(data.edge_index, reduce="mean")
graph_store = cugraph_pyg.data.GraphStore()
graph_store[dict(
edge_type=('node', 'rel', 'node'),
layout='coo',
is_sorted=False,
size=(data.num_nodes, data.num_nodes),
)] = data.edge_index
feature_store = cugraph_pyg.data.TensorDictFeatureStore()
feature_store['node', 'x'] = data.x
feature_store['node', 'y'] = data.y
data = (feature_store, graph_store)
class SAGE(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(SAGEConv(in_channels, args.channels))
for _ in range(args.num_layers - 2):
self.convs.append(SAGEConv(args.channels, args.channels))
self.convs.append(SAGEConv(args.channels, out_channels))
def forward(self, x, edge_index):
for i, conv in enumerate(self.convs):
x = conv(x, edge_index)
if i != args.num_layers - 1:
x = x.relu()
x = F.dropout(x, p=args.dropout, training=self.training)
return x
model = SAGE(dataset.num_features, dataset.num_classes).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
def create_loader(
data,
num_neighbors,
input_nodes,
replace,
batch_size,
samples_dir,
stage_name,
shuffle=False,
):
directory = osp.join(samples_dir, stage_name)
os.mkdir(directory)
return NeighborLoader(
data,
num_neighbors=num_neighbors,
input_nodes=input_nodes,
replace=replace,
batch_size=batch_size,
directory=directory,
shuffle=shuffle,
)
with tempfile.TemporaryDirectory(dir=args.tempdir_root) as samples_dir:
loader_kwargs = dict(
data=data,
num_neighbors=[args.num_neighbors] * args.num_layers,
replace=False,
batch_size=args.batch_size,
samples_dir=samples_dir,
)
train_loader = create_loader(
input_nodes=split_idx['train'],
stage_name='train',
shuffle=True,
**loader_kwargs,
)
val_loader = create_loader(
input_nodes=split_idx['valid'],
stage_name='val',
**loader_kwargs,
)
test_loader = create_loader(
input_nodes=split_idx['test'],
stage_name='test',
**loader_kwargs,
)
def train():
model.train()
total_loss = total_correct = total_examples = 0
for i, batch in enumerate(train_loader):
batch = batch.cuda()
optimizer.zero_grad()
out = model(batch.x, batch.edge_index)[:batch.batch_size]
y = batch.y[:batch.batch_size].view(-1).to(torch.long)
loss = F.cross_entropy(out, y)
loss.backward()
optimizer.step()
total_loss += float(loss) * y.size(0)
total_correct += int(out.argmax(dim=-1).eq(y).sum())
total_examples += y.size(0)
if i % 10 == 0:
print(f"Epoch: {epoch:02d}, Iteration: {i}, Loss: {loss:.4f}")
return total_loss / total_examples, total_correct / total_examples
@torch.no_grad()
def test(loader):
model.eval()
total_correct = total_examples = 0
for batch in loader:
batch = batch.cuda()
out = model(batch.x, batch.edge_index)[:batch.batch_size]
y = batch.y[:batch.batch_size].view(-1).to(torch.long)
total_correct += int(out.argmax(dim=-1).eq(y).sum())
total_examples += y.size(0)
return total_correct / total_examples
for epoch in range(1, args.epochs + 1):
loss, train_acc = train()
print(f'Epoch {epoch:02d}, Loss: {loss:.4f}, Train: {train_acc:.4f}')
val_acc = test(val_loader)
print(f'Epoch {epoch:02d}, Val: {val_acc:.4f}')
test_acc = test(test_loader)
print(f'Epoch {epoch:02d}, Test: {test_acc:.4f}')
|