File: ogbn_papers_100m_cugraph.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (189 lines) | stat: -rw-r--r-- 5,842 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
import os
import os.path as osp
import tempfile

import cupy
import rmm
import torch
from rmm.allocators.cupy import rmm_cupy_allocator
from rmm.allocators.torch import rmm_torch_allocator

# Must change allocators immediately upon import
# or else other imports will cause memory to be
# allocated and prevent changing the allocator
rmm.reinitialize(devices=[0], pool_allocator=True, managed_memory=True)
cupy.cuda.set_allocator(rmm_cupy_allocator)
torch.cuda.memory.change_current_allocator(rmm_torch_allocator)

import cugraph_pyg  # noqa
import torch.nn.functional as F  # noqa
# Enable cudf spilling to save gpu memory
from cugraph.testing.mg_utils import enable_spilling  # noqa
from cugraph_pyg.loader import NeighborLoader  # noqa

enable_spilling()

from ogb.nodeproppred import PygNodePropPredDataset  # noqa
from tqdm import tqdm  # noqa

from torch_geometric.nn import SAGEConv  # noqa
from torch_geometric.utils import to_undirected  # noqa

parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--batch_size', type=int, default=1024)
parser.add_argument('--num_neighbors', type=int, default=10)
parser.add_argument('--channels', type=int, default=256)
parser.add_argument('--lr', type=float, default=0.003)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--num_workers', type=int, default=12)
parser.add_argument('--root', type=str, default=None)
parser.add_argument('--tempdir_root', type=str, default=None)
args = parser.parse_args()

root = args.root
if root is None:
    root = osp.dirname(osp.realpath(__file__))
    root = osp.join(root, '..', 'data', 'papers100')

dataset = PygNodePropPredDataset('ogbn-papers100M', root)
split_idx = dataset.get_idx_split()

data = dataset[0]
data.edge_index = to_undirected(data.edge_index, reduce="mean")

graph_store = cugraph_pyg.data.GraphStore()
graph_store[dict(
    edge_type=('node', 'rel', 'node'),
    layout='coo',
    is_sorted=False,
    size=(data.num_nodes, data.num_nodes),
)] = data.edge_index

feature_store = cugraph_pyg.data.TensorDictFeatureStore()
feature_store['node', 'x'] = data.x
feature_store['node', 'y'] = data.y

data = (feature_store, graph_store)


class SAGE(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()

        self.convs = torch.nn.ModuleList()
        self.convs.append(SAGEConv(in_channels, args.channels))
        for _ in range(args.num_layers - 2):
            self.convs.append(SAGEConv(args.channels, args.channels))
        self.convs.append(SAGEConv(args.channels, out_channels))

    def forward(self, x, edge_index):
        for i, conv in enumerate(self.convs):
            x = conv(x, edge_index)
            if i != args.num_layers - 1:
                x = x.relu()
                x = F.dropout(x, p=args.dropout, training=self.training)
        return x


model = SAGE(dataset.num_features, dataset.num_classes).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)


def create_loader(
    data,
    num_neighbors,
    input_nodes,
    replace,
    batch_size,
    samples_dir,
    stage_name,
    shuffle=False,
):
    directory = osp.join(samples_dir, stage_name)
    os.mkdir(directory)
    return NeighborLoader(
        data,
        num_neighbors=num_neighbors,
        input_nodes=input_nodes,
        replace=replace,
        batch_size=batch_size,
        directory=directory,
        shuffle=shuffle,
    )


with tempfile.TemporaryDirectory(dir=args.tempdir_root) as samples_dir:
    loader_kwargs = dict(
        data=data,
        num_neighbors=[args.num_neighbors] * args.num_layers,
        replace=False,
        batch_size=args.batch_size,
        samples_dir=samples_dir,
    )

    train_loader = create_loader(
        input_nodes=split_idx['train'],
        stage_name='train',
        shuffle=True,
        **loader_kwargs,
    )

    val_loader = create_loader(
        input_nodes=split_idx['valid'],
        stage_name='val',
        **loader_kwargs,
    )

    test_loader = create_loader(
        input_nodes=split_idx['test'],
        stage_name='test',
        **loader_kwargs,
    )

    def train():
        model.train()

        total_loss = total_correct = total_examples = 0
        for i, batch in enumerate(train_loader):
            batch = batch.cuda()
            optimizer.zero_grad()
            out = model(batch.x, batch.edge_index)[:batch.batch_size]
            y = batch.y[:batch.batch_size].view(-1).to(torch.long)
            loss = F.cross_entropy(out, y)
            loss.backward()
            optimizer.step()

            total_loss += float(loss) * y.size(0)
            total_correct += int(out.argmax(dim=-1).eq(y).sum())
            total_examples += y.size(0)

            if i % 10 == 0:
                print(f"Epoch: {epoch:02d}, Iteration: {i}, Loss: {loss:.4f}")

        return total_loss / total_examples, total_correct / total_examples

    @torch.no_grad()
    def test(loader):
        model.eval()

        total_correct = total_examples = 0
        for batch in loader:
            batch = batch.cuda()
            out = model(batch.x, batch.edge_index)[:batch.batch_size]
            y = batch.y[:batch.batch_size].view(-1).to(torch.long)

            total_correct += int(out.argmax(dim=-1).eq(y).sum())
            total_examples += y.size(0)

        return total_correct / total_examples

    for epoch in range(1, args.epochs + 1):
        loss, train_acc = train()
        print(f'Epoch {epoch:02d}, Loss: {loss:.4f}, Train: {train_acc:.4f}')
        val_acc = test(val_loader)
        print(f'Epoch {epoch:02d}, Val: {val_acc:.4f}')
        test_acc = test(test_loader)
        print(f'Epoch {epoch:02d}, Test: {test_acc:.4f}')