1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
import torch
import torch.nn.functional as F
from ogb.nodeproppred import Evaluator, PygNodePropPredDataset
from torch.nn import LayerNorm, Linear, ReLU
from tqdm import tqdm
from torch_geometric.loader import RandomNodeLoader
from torch_geometric.nn import DeepGCNLayer, GENConv
from torch_geometric.utils import scatter
dataset = PygNodePropPredDataset('ogbn-proteins', root='../data')
splitted_idx = dataset.get_idx_split()
data = dataset[0]
data.node_species = None
data.y = data.y.to(torch.float)
# Initialize features of nodes by aggregating edge features.
row, col = data.edge_index
data.x = scatter(data.edge_attr, col, dim_size=data.num_nodes, reduce='sum')
# Set split indices to masks.
for split in ['train', 'valid', 'test']:
mask = torch.zeros(data.num_nodes, dtype=torch.bool)
mask[splitted_idx[split]] = True
data[f'{split}_mask'] = mask
train_loader = RandomNodeLoader(data, num_parts=40, shuffle=True,
num_workers=5)
test_loader = RandomNodeLoader(data, num_parts=5, num_workers=5)
class DeeperGCN(torch.nn.Module):
def __init__(self, hidden_channels, num_layers):
super().__init__()
self.node_encoder = Linear(data.x.size(-1), hidden_channels)
self.edge_encoder = Linear(data.edge_attr.size(-1), hidden_channels)
self.layers = torch.nn.ModuleList()
for i in range(1, num_layers + 1):
conv = GENConv(hidden_channels, hidden_channels, aggr='softmax',
t=1.0, learn_t=True, num_layers=2, norm='layer')
norm = LayerNorm(hidden_channels, elementwise_affine=True)
act = ReLU(inplace=True)
layer = DeepGCNLayer(conv, norm, act, block='res+', dropout=0.1,
ckpt_grad=i % 3)
self.layers.append(layer)
self.lin = Linear(hidden_channels, data.y.size(-1))
def forward(self, x, edge_index, edge_attr):
x = self.node_encoder(x)
edge_attr = self.edge_encoder(edge_attr)
x = self.layers[0].conv(x, edge_index, edge_attr)
for layer in self.layers[1:]:
x = layer(x, edge_index, edge_attr)
x = self.layers[0].act(self.layers[0].norm(x))
x = F.dropout(x, p=0.1, training=self.training)
return self.lin(x)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = DeeperGCN(hidden_channels=64, num_layers=28).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = torch.nn.BCEWithLogitsLoss()
evaluator = Evaluator('ogbn-proteins')
def train(epoch):
model.train()
pbar = tqdm(total=len(train_loader))
pbar.set_description(f'Training epoch: {epoch:04d}')
total_loss = total_examples = 0
for data in train_loader:
optimizer.zero_grad()
data = data.to(device)
out = model(data.x, data.edge_index, data.edge_attr)
loss = criterion(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
total_loss += float(loss) * int(data.train_mask.sum())
total_examples += int(data.train_mask.sum())
pbar.update(1)
pbar.close()
return total_loss / total_examples
@torch.no_grad()
def test():
model.eval()
y_true = {'train': [], 'valid': [], 'test': []}
y_pred = {'train': [], 'valid': [], 'test': []}
pbar = tqdm(total=len(test_loader))
pbar.set_description(f'Evaluating epoch: {epoch:04d}')
for data in test_loader:
data = data.to(device)
out = model(data.x, data.edge_index, data.edge_attr)
for split in y_true.keys():
mask = data[f'{split}_mask']
y_true[split].append(data.y[mask].cpu())
y_pred[split].append(out[mask].cpu())
pbar.update(1)
pbar.close()
train_rocauc = evaluator.eval({
'y_true': torch.cat(y_true['train'], dim=0),
'y_pred': torch.cat(y_pred['train'], dim=0),
})['rocauc']
valid_rocauc = evaluator.eval({
'y_true': torch.cat(y_true['valid'], dim=0),
'y_pred': torch.cat(y_pred['valid'], dim=0),
})['rocauc']
test_rocauc = evaluator.eval({
'y_true': torch.cat(y_true['test'], dim=0),
'y_pred': torch.cat(y_pred['test'], dim=0),
})['rocauc']
return train_rocauc, valid_rocauc, test_rocauc
for epoch in range(1, 1001):
loss = train(epoch)
train_rocauc, valid_rocauc, test_rocauc = test()
print(f'Loss: {loss:.4f}, Train: {train_rocauc:.4f}, '
f'Val: {valid_rocauc:.4f}, Test: {test_rocauc:.4f}')
|