File: point_transformer_segmentation.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (228 lines) | stat: -rw-r--r-- 8,259 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os.path as osp

import torch
import torch.nn.functional as F
from point_transformer_classification import TransformerBlock, TransitionDown
from torchmetrics.functional import jaccard_index

import torch_geometric.transforms as T
from torch_geometric.datasets import ShapeNet
from torch_geometric.loader import DataLoader
from torch_geometric.nn import MLP, knn_graph, knn_interpolate
from torch_geometric.typing import WITH_TORCH_CLUSTER
from torch_geometric.utils import scatter

if not WITH_TORCH_CLUSTER:
    quit("This example requires 'torch-cluster'")

category = 'Airplane'  # Pass in `None` to train on all categories.
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'ShapeNet')
transform = T.Compose([
    T.RandomJitter(0.01),
    T.RandomRotate(15, axis=0),
    T.RandomRotate(15, axis=1),
    T.RandomRotate(15, axis=2),
])
pre_transform = T.NormalizeScale()
train_dataset = ShapeNet(path, category, split='trainval', transform=transform,
                         pre_transform=pre_transform)
test_dataset = ShapeNet(path, category, split='test',
                        pre_transform=pre_transform)
train_loader = DataLoader(train_dataset, batch_size=10, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=10, shuffle=False)


class TransitionUp(torch.nn.Module):
    """Reduce features dimensionality and interpolate back to higher
    resolution and cardinality.
    """
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.mlp_sub = MLP([in_channels, out_channels], plain_last=False)
        self.mlp = MLP([out_channels, out_channels], plain_last=False)

    def forward(self, x, x_sub, pos, pos_sub, batch=None, batch_sub=None):
        # transform low-res features and reduce the number of features
        x_sub = self.mlp_sub(x_sub)

        # interpolate low-res feats to high-res points
        x_interpolated = knn_interpolate(x_sub, pos_sub, pos, k=3,
                                         batch_x=batch_sub, batch_y=batch)

        x = self.mlp(x) + x_interpolated

        return x


class Net(torch.nn.Module):
    def __init__(self, in_channels, out_channels, dim_model, k=16):
        super().__init__()
        self.k = k

        # dummy feature is created if there is none given
        in_channels = max(in_channels, 1)

        # first block
        self.mlp_input = MLP([in_channels, dim_model[0]], plain_last=False)

        self.transformer_input = TransformerBlock(
            in_channels=dim_model[0],
            out_channels=dim_model[0],
        )

        # backbone layers
        self.transformers_up = torch.nn.ModuleList()
        self.transformers_down = torch.nn.ModuleList()
        self.transition_up = torch.nn.ModuleList()
        self.transition_down = torch.nn.ModuleList()

        for i in range(0, len(dim_model) - 1):

            # Add Transition Down block followed by a Point Transformer block
            self.transition_down.append(
                TransitionDown(in_channels=dim_model[i],
                               out_channels=dim_model[i + 1], k=self.k))

            self.transformers_down.append(
                TransformerBlock(in_channels=dim_model[i + 1],
                                 out_channels=dim_model[i + 1]))

            # Add Transition Up block followed by Point Transformer block
            self.transition_up.append(
                TransitionUp(in_channels=dim_model[i + 1],
                             out_channels=dim_model[i]))

            self.transformers_up.append(
                TransformerBlock(in_channels=dim_model[i],
                                 out_channels=dim_model[i]))

        # summit layers
        self.mlp_summit = MLP([dim_model[-1], dim_model[-1]], norm=None,
                              plain_last=False)

        self.transformer_summit = TransformerBlock(
            in_channels=dim_model[-1],
            out_channels=dim_model[-1],
        )

        # class score computation
        self.mlp_output = MLP([dim_model[0], 64, out_channels], norm=None)

    def forward(self, x, pos, batch=None):

        # add dummy features in case there is none
        if x is None:
            x = torch.ones((pos.shape[0], 1)).to(pos.get_device())

        out_x = []
        out_pos = []
        out_batch = []

        # first block
        x = self.mlp_input(x)
        edge_index = knn_graph(pos, k=self.k, batch=batch)
        x = self.transformer_input(x, pos, edge_index)

        # save outputs for skipping connections
        out_x.append(x)
        out_pos.append(pos)
        out_batch.append(batch)

        # backbone down : #reduce cardinality and augment dimensionnality
        for i in range(len(self.transformers_down)):
            x, pos, batch = self.transition_down[i](x, pos, batch=batch)
            edge_index = knn_graph(pos, k=self.k, batch=batch)
            x = self.transformers_down[i](x, pos, edge_index)

            out_x.append(x)
            out_pos.append(pos)
            out_batch.append(batch)

        # summit
        x = self.mlp_summit(x)
        edge_index = knn_graph(pos, k=self.k, batch=batch)
        x = self.transformer_summit(x, pos, edge_index)

        # backbone up : augment cardinality and reduce dimensionnality
        n = len(self.transformers_down)
        for i in range(n):
            x = self.transition_up[-i - 1](x=out_x[-i - 2], x_sub=x,
                                           pos=out_pos[-i - 2],
                                           pos_sub=out_pos[-i - 1],
                                           batch_sub=out_batch[-i - 1],
                                           batch=out_batch[-i - 2])

            edge_index = knn_graph(out_pos[-i - 2], k=self.k,
                                   batch=out_batch[-i - 2])
            x = self.transformers_up[-i - 1](x, out_pos[-i - 2], edge_index)

        # Class score
        out = self.mlp_output(x)

        return F.log_softmax(out, dim=-1)


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(3, train_dataset.num_classes, dim_model=[32, 64, 128, 256, 512],
            k=16).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)


def train():
    model.train()

    total_loss = correct_nodes = total_nodes = 0
    for i, data in enumerate(train_loader):
        data = data.to(device)
        optimizer.zero_grad()
        out = model(data.x, data.pos, data.batch)
        loss = F.nll_loss(out, data.y)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
        correct_nodes += out.argmax(dim=1).eq(data.y).sum().item()
        total_nodes += data.num_nodes

        if (i + 1) % 10 == 0:
            print(f'[{i+1}/{len(train_loader)}] Loss: {total_loss / 10:.4f} '
                  f'Train Acc: {correct_nodes / total_nodes:.4f}')
            total_loss = correct_nodes = total_nodes = 0


def test(loader):
    model.eval()

    ious, categories = [], []
    y_map = torch.empty(loader.dataset.num_classes, device=device).long()
    for data in loader:
        data = data.to(device)
        outs = model(data.x, data.pos, data.batch)

        sizes = (data.ptr[1:] - data.ptr[:-1]).tolist()
        for out, y, category in zip(outs.split(sizes), data.y.split(sizes),
                                    data.category.tolist()):
            category = list(ShapeNet.seg_classes.keys())[category]
            part = ShapeNet.seg_classes[category]
            part = torch.tensor(part, device=device)

            y_map[part] = torch.arange(part.size(0), device=device)

            iou = jaccard_index(out[:, part].argmax(dim=-1), y_map[y],
                                num_classes=part.size(0), absent_score=1.0)
            ious.append(iou)

        categories.append(data.category)

    iou = torch.tensor(ious, device=device)
    category = torch.cat(categories, dim=0)

    mean_iou = scatter(iou, category, reduce='mean')  # Per-category IoU.
    return float(mean_iou.mean())  # Global IoU.


for epoch in range(1, 100):
    train()
    iou = test(test_loader)
    print(f'Epoch: {epoch:03d}, Test IoU: {iou:.4f}')
    scheduler.step()