1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
import os.path as osp
import torch
import torch.nn.functional as F
from pointnet2_classification import GlobalSAModule, SAModule
from torchmetrics.functional import jaccard_index
import torch_geometric.transforms as T
from torch_geometric.datasets import ShapeNet
from torch_geometric.loader import DataLoader
from torch_geometric.nn import MLP, knn_interpolate
from torch_geometric.typing import WITH_TORCH_CLUSTER
from torch_geometric.utils import scatter
if not WITH_TORCH_CLUSTER:
quit("This example requires 'torch-cluster'")
category = 'Airplane' # Pass in `None` to train on all categories.
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'ShapeNet')
transform = T.Compose([
T.RandomJitter(0.01),
T.RandomRotate(15, axis=0),
T.RandomRotate(15, axis=1),
T.RandomRotate(15, axis=2)
])
pre_transform = T.NormalizeScale()
train_dataset = ShapeNet(path, category, split='trainval', transform=transform,
pre_transform=pre_transform)
test_dataset = ShapeNet(path, category, split='test',
pre_transform=pre_transform)
train_loader = DataLoader(train_dataset, batch_size=12, shuffle=True,
num_workers=6)
test_loader = DataLoader(test_dataset, batch_size=12, shuffle=False,
num_workers=6)
class FPModule(torch.nn.Module):
def __init__(self, k, nn):
super().__init__()
self.k = k
self.nn = nn
def forward(self, x, pos, batch, x_skip, pos_skip, batch_skip):
x = knn_interpolate(x, pos, pos_skip, batch, batch_skip, k=self.k)
if x_skip is not None:
x = torch.cat([x, x_skip], dim=1)
x = self.nn(x)
return x, pos_skip, batch_skip
class Net(torch.nn.Module):
def __init__(self, num_classes):
super().__init__()
# Input channels account for both `pos` and node features.
self.sa1_module = SAModule(0.2, 0.2, MLP([3 + 3, 64, 64, 128]))
self.sa2_module = SAModule(0.25, 0.4, MLP([128 + 3, 128, 128, 256]))
self.sa3_module = GlobalSAModule(MLP([256 + 3, 256, 512, 1024]))
self.fp3_module = FPModule(1, MLP([1024 + 256, 256, 256]))
self.fp2_module = FPModule(3, MLP([256 + 128, 256, 128]))
self.fp1_module = FPModule(3, MLP([128 + 3, 128, 128, 128]))
self.mlp = MLP([128, 128, 128, num_classes], dropout=0.5, norm=None)
self.lin1 = torch.nn.Linear(128, 128)
self.lin2 = torch.nn.Linear(128, 128)
self.lin3 = torch.nn.Linear(128, num_classes)
def forward(self, data):
sa0_out = (data.x, data.pos, data.batch)
sa1_out = self.sa1_module(*sa0_out)
sa2_out = self.sa2_module(*sa1_out)
sa3_out = self.sa3_module(*sa2_out)
fp3_out = self.fp3_module(*sa3_out, *sa2_out)
fp2_out = self.fp2_module(*fp3_out, *sa1_out)
x, _, _ = self.fp1_module(*fp2_out, *sa0_out)
return self.mlp(x).log_softmax(dim=-1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(train_dataset.num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
def train():
model.train()
total_loss = correct_nodes = total_nodes = 0
for i, data in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
total_loss += loss.item()
correct_nodes += out.argmax(dim=1).eq(data.y).sum().item()
total_nodes += data.num_nodes
if (i + 1) % 10 == 0:
print(f'[{i+1}/{len(train_loader)}] Loss: {total_loss / 10:.4f} '
f'Train Acc: {correct_nodes / total_nodes:.4f}')
total_loss = correct_nodes = total_nodes = 0
@torch.no_grad()
def test(loader):
model.eval()
ious, categories = [], []
y_map = torch.empty(loader.dataset.num_classes, device=device).long()
for data in loader:
data = data.to(device)
outs = model(data)
sizes = (data.ptr[1:] - data.ptr[:-1]).tolist()
for out, y, category in zip(outs.split(sizes), data.y.split(sizes),
data.category.tolist()):
category = list(ShapeNet.seg_classes.keys())[category]
part = ShapeNet.seg_classes[category]
part = torch.tensor(part, device=device)
y_map[part] = torch.arange(part.size(0), device=device)
iou = jaccard_index(out[:, part].argmax(dim=-1), y_map[y],
num_classes=part.size(0), absent_score=1.0)
ious.append(iou)
categories.append(data.category)
iou = torch.tensor(ious, device=device)
category = torch.cat(categories, dim=0)
mean_iou = scatter(iou, category, reduce='mean') # Per-category IoU.
return float(mean_iou.mean()) # Global IoU.
for epoch in range(1, 31):
train()
iou = test(test_loader)
print(f'Epoch: {epoch:02d}, Test IoU: {iou:.4f}')
|