1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
import os.path as osp
import time
from math import ceil
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DenseDataLoader
from torch_geometric.nn import DenseSAGEConv, dense_diff_pool
max_nodes = 150
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data',
'PROTEINS_dense')
dataset = TUDataset(
path,
name='PROTEINS',
transform=T.ToDense(max_nodes),
pre_filter=lambda data: data.num_nodes <= max_nodes,
)
dataset = dataset.shuffle()
n = (len(dataset) + 9) // 10
test_dataset = dataset[:n]
val_dataset = dataset[n:2 * n]
train_dataset = dataset[2 * n:]
test_loader = DenseDataLoader(test_dataset, batch_size=20)
val_loader = DenseDataLoader(val_dataset, batch_size=20)
train_loader = DenseDataLoader(train_dataset, batch_size=20)
class GNN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels,
normalize=False, lin=True):
super().__init__()
self.conv1 = DenseSAGEConv(in_channels, hidden_channels, normalize)
self.bn1 = torch.nn.BatchNorm1d(hidden_channels)
self.conv2 = DenseSAGEConv(hidden_channels, hidden_channels, normalize)
self.bn2 = torch.nn.BatchNorm1d(hidden_channels)
self.conv3 = DenseSAGEConv(hidden_channels, out_channels, normalize)
self.bn3 = torch.nn.BatchNorm1d(out_channels)
if lin is True:
self.lin = torch.nn.Linear(2 * hidden_channels + out_channels,
out_channels)
else:
self.lin = None
def bn(self, i, x):
batch_size, num_nodes, num_channels = x.size()
x = x.view(-1, num_channels)
x = getattr(self, f'bn{i}')(x)
x = x.view(batch_size, num_nodes, num_channels)
return x
def forward(self, x, adj, mask=None):
batch_size, num_nodes, in_channels = x.size()
x0 = x
x1 = self.bn(1, self.conv1(x0, adj, mask).relu())
x2 = self.bn(2, self.conv2(x1, adj, mask).relu())
x3 = self.bn(3, self.conv3(x2, adj, mask).relu())
x = torch.cat([x1, x2, x3], dim=-1)
if self.lin is not None:
x = self.lin(x).relu()
return x
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
num_nodes = ceil(0.25 * max_nodes)
self.gnn1_pool = GNN(dataset.num_features, 64, num_nodes)
self.gnn1_embed = GNN(dataset.num_features, 64, 64, lin=False)
num_nodes = ceil(0.25 * num_nodes)
self.gnn2_pool = GNN(3 * 64, 64, num_nodes)
self.gnn2_embed = GNN(3 * 64, 64, 64, lin=False)
self.gnn3_embed = GNN(3 * 64, 64, 64, lin=False)
self.lin1 = torch.nn.Linear(3 * 64, 64)
self.lin2 = torch.nn.Linear(64, dataset.num_classes)
def forward(self, x, adj, mask=None):
s = self.gnn1_pool(x, adj, mask)
x = self.gnn1_embed(x, adj, mask)
x, adj, l1, e1 = dense_diff_pool(x, adj, s, mask)
s = self.gnn2_pool(x, adj)
x = self.gnn2_embed(x, adj)
x, adj, l2, e2 = dense_diff_pool(x, adj, s)
x = self.gnn3_embed(x, adj)
x = x.mean(dim=1)
x = self.lin1(x).relu()
x = self.lin2(x)
return F.log_softmax(x, dim=-1), l1 + l2, e1 + e2
if torch.cuda.is_available():
device = torch.device('cuda')
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
model = Net().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
def train(epoch):
model.train()
loss_all = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
output, _, _ = model(data.x, data.adj, data.mask)
loss = F.nll_loss(output, data.y.view(-1))
loss.backward()
loss_all += data.y.size(0) * float(loss)
optimizer.step()
return loss_all / len(train_dataset)
@torch.no_grad()
def test(loader):
model.eval()
correct = 0
for data in loader:
data = data.to(device)
pred = model(data.x, data.adj, data.mask)[0].max(dim=1)[1]
correct += int(pred.eq(data.y.view(-1)).sum())
return correct / len(loader.dataset)
best_val_acc = test_acc = 0
times = []
for epoch in range(1, 151):
start = time.time()
train_loss = train(epoch)
val_acc = test(val_loader)
if val_acc > best_val_acc:
test_acc = test(test_loader)
best_val_acc = val_acc
print(f'Epoch: {epoch:03d}, Train Loss: {train_loss:.4f}, '
f'Val Acc: {val_acc:.4f}, Test Acc: {test_acc:.4f}')
times.append(time.time() - start)
print(f"Median time per epoch: {torch.tensor(times).median():.4f}s")
|