1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
import os.path as osp
import ignite
import ignite.contrib.handlers.tensorboard_logger
import ignite.contrib.handlers.tqdm_logger
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric import seed_everything
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DataLoader
from torch_geometric.nn import GIN, MLP, global_add_pool
class Model(torch.nn.Module):
def __init__(self, in_channels: int, out_channels: int,
hidden_channels: int = 64, num_layers: int = 3,
dropout: float = 0.5):
super().__init__()
self.gnn = GIN(in_channels, hidden_channels, num_layers,
dropout=dropout, jk='cat')
self.classifier = MLP([hidden_channels, hidden_channels, out_channels],
norm="batch_norm", dropout=dropout)
def forward(self, data):
x = self.gnn(data.x, data.edge_index)
x = global_add_pool(x, data.batch)
x = self.classifier(x)
return x
def main():
seed_everything(42)
root = osp.join('data', 'TUDataset')
dataset = TUDataset(root, 'IMDB-BINARY', pre_transform=T.OneHotDegree(135))
dataset = dataset.shuffle()
test_dataset = dataset[:len(dataset) // 10]
val_dataset = dataset[len(dataset) // 10:2 * len(dataset) // 10]
train_dataset = dataset[2 * len(dataset) // 10:]
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True,
pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=64, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=64, pin_memory=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Model(dataset.num_node_features, dataset.num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
metrics = {'acc': ignite.metrics.Accuracy()}
def prepare_batch_fn(batch, device, non_blocking):
return (batch.to(device, non_blocking=non_blocking),
batch.y.to(device, non_blocking=non_blocking))
trainer = ignite.engine.create_supervised_trainer(
model=model,
optimizer=optimizer,
loss_fn=F.cross_entropy,
device=device,
prepare_batch=prepare_batch_fn,
output_transform=lambda x, y, y_pred, loss: loss.item(),
amp_mode='amp',
)
# Progress bar for each epoch:
pbar = ignite.contrib.handlers.tqdm_logger.ProgressBar()
pbar.attach(trainer, output_transform=lambda x: {'loss': x})
def log_metrics(evaluator, loader, tag):
def logger(trainer):
evaluator.run(loader)
print(f'{tag:10} Epoch: {trainer.state.epoch:02d}, '
f'Acc: {evaluator.state.metrics["acc"]:.4f}')
return logger
train_evaluator = ignite.engine.create_supervised_evaluator(
model=model,
metrics=metrics,
device=device,
prepare_batch=prepare_batch_fn,
output_transform=lambda x, y, y_pred: (y_pred, y),
amp_mode='amp',
)
trainer.on(ignite.engine.Events.EPOCH_COMPLETED(every=1))(log_metrics(
train_evaluator, train_loader, 'Training'))
val_evaluator = ignite.engine.create_supervised_evaluator(
model=model,
metrics=metrics,
device=device,
prepare_batch=prepare_batch_fn,
output_transform=lambda x, y, y_pred: (y_pred, y),
amp_mode='amp',
)
trainer.on(ignite.engine.Events.EPOCH_COMPLETED(every=1))(log_metrics(
val_evaluator, val_loader, 'Validation'))
test_evaluator = ignite.engine.create_supervised_evaluator(
model=model,
metrics=metrics,
device=device,
prepare_batch=prepare_batch_fn,
output_transform=lambda x, y, y_pred: (y_pred, y),
amp_mode='amp',
)
trainer.on(ignite.engine.Events.EPOCH_COMPLETED(every=1))(log_metrics(
test_evaluator, test_loader, 'Test'))
# Save checkpoint of the model based on Accuracy on the validation set:
checkpoint_handler = ignite.handlers.Checkpoint(
{'model': model},
'runs/gin',
n_saved=2,
score_name=list(metrics.keys())[0],
filename_pattern='best-{global_step}-{score_name}-{score}.pt',
global_step_transform=ignite.handlers.global_step_from_engine(trainer),
)
val_evaluator.add_event_handler(ignite.engine.Events.EPOCH_COMPLETED,
checkpoint_handler)
# Create a tensorboard logger to write logs:
tb_logger = ignite.contrib.handlers.tensorboard_logger.TensorboardLogger(
log_dir=osp.join('runs/example', 'tb_logs'))
tb_logger.attach_output_handler(
trainer, event_name=ignite.engine.Events.ITERATION_COMPLETED,
tag='training', output_transform=lambda loss: {'loss_iteration': loss})
tb_logger.attach_output_handler(
trainer, event_name=ignite.engine.Events.EPOCH_COMPLETED,
tag='training', output_transform=lambda loss: {'loss_epoch': loss})
tb_logger.attach_output_handler(
train_evaluator,
event_name=ignite.engine.Events.EPOCH_COMPLETED,
tag='training',
metric_names='all',
global_step_transform=ignite.handlers.global_step_from_engine(trainer),
)
tb_logger.attach_output_handler(
val_evaluator,
event_name=ignite.engine.Events.EPOCH_COMPLETED,
tag='validation',
metric_names='all',
global_step_transform=ignite.handlers.global_step_from_engine(trainer),
)
tb_logger.attach_output_handler(
test_evaluator,
event_name=ignite.engine.Events.EPOCH_COMPLETED,
tag='test',
metric_names='all',
global_step_transform=ignite.handlers.global_step_from_engine(trainer),
)
tb_logger.close()
trainer.run(train_loader, max_epochs=50)
if __name__ == '__main__':
main()
|