1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
import os.path as osp
from typing import Dict, List, Tuple
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from torch import Tensor
from torchmetrics import Accuracy
import torch_geometric.transforms as T
from torch_geometric.data import Batch
from torch_geometric.data.lightning import LightningNodeData
from torch_geometric.datasets import OGB_MAG
from torch_geometric.nn import Linear, SAGEConv, to_hetero
from torch_geometric.typing import EdgeType, NodeType
class GNN(torch.nn.Module):
def __init__(self, hidden_channels: int, out_channels: int,
dropout: float):
super().__init__()
self.dropout = torch.nn.Dropout(p=dropout)
self.conv1 = SAGEConv((-1, -1), hidden_channels)
self.conv2 = SAGEConv((-1, -1), hidden_channels)
self.lin = Linear(-1, out_channels)
def forward(self, x: Tensor, edge_index: Tensor) -> Tensor:
x = self.conv1(x, edge_index).relu()
x = self.dropout(x)
x = self.conv2(x, edge_index).relu()
x = self.dropout(x)
return self.lin(x)
class RelationalGNN(LightningModule):
def __init__(
self,
metadata: Tuple[List[NodeType], List[EdgeType]],
hidden_channels: int,
out_channels: int,
dropout: float,
):
super().__init__()
self.save_hyperparameters()
model = GNN(hidden_channels, out_channels, dropout)
# Convert the homogeneous GNN model to a heterogeneous variant in
# which distinct parameters are learned for each node and edge type.
self.model = to_hetero(model, metadata, aggr='sum')
self.train_acc = Accuracy(task='multiclass', num_classes=out_channels)
self.val_acc = Accuracy(task='multiclass', num_classes=out_channels)
self.test_acc = Accuracy(task='multiclass', num_classes=out_channels)
def forward(
self,
x_dict: Dict[NodeType, Tensor],
edge_index_dict: Dict[EdgeType, Tensor],
) -> Dict[NodeType, Tensor]:
return self.model(x_dict, edge_index_dict)
def common_step(self, batch: Batch) -> Tuple[Tensor, Tensor]:
batch_size = batch['paper'].batch_size
y_hat = self(batch.x_dict, batch.edge_index_dict)['paper'][:batch_size]
y = batch['paper'].y[:batch_size]
return y_hat, y
def training_step(self, batch: Batch, batch_idx: int) -> Tensor:
y_hat, y = self.common_step(batch)
loss = F.cross_entropy(y_hat, y)
self.train_acc(y_hat.softmax(dim=-1), y)
self.log('train_acc', self.train_acc, prog_bar=True, on_step=False,
on_epoch=True)
return loss
def validation_step(self, batch: Batch, batch_idx: int):
y_hat, y = self.common_step(batch)
self.val_acc(y_hat.softmax(dim=-1), y)
self.log('val_acc', self.val_acc, prog_bar=True, on_step=False,
on_epoch=True)
def test_step(self, batch: Batch, batch_idx: int):
y_hat, y = self.common_step(batch)
self.test_acc(y_hat.softmax(dim=-1), y)
self.log('test_acc', self.test_acc, prog_bar=True, on_step=False,
on_epoch=True)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.01)
def main():
dataset = OGB_MAG(osp.join('data', 'OGB'), preprocess='metapath2vec',
transform=T.ToUndirected(merge=False))
data = dataset[0]
datamodule = LightningNodeData(
data,
input_train_nodes=('paper', data['paper'].train_mask),
input_val_nodes=('paper', data['paper'].val_mask),
input_test_nodes=('paper', data['paper'].test_mask),
loader='neighbor',
num_neighbors=[10, 10],
batch_size=1024,
num_workers=8,
)
model = RelationalGNN(data.metadata(), hidden_channels=64,
out_channels=349, dropout=0.0)
with torch.no_grad(): # Run a dummy forward pass to initialize lazy model
loader = datamodule.train_dataloader()
batch = next(iter(loader))
model.common_step(batch)
strategy = pl.strategies.SingleDeviceStrategy('cuda:0')
checkpoint = ModelCheckpoint(monitor='val_acc', save_top_k=1, mode='max')
trainer = Trainer(strategy=strategy, devices=1, max_epochs=20,
log_every_n_steps=5, callbacks=[checkpoint])
trainer.fit(model, datamodule)
trainer.test(ckpt_path='best', datamodule=datamodule)
if __name__ == "__main__":
main()
|