1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
import copy
import os.path as osp
import torch
import torch.nn.functional as F
from torch.nn import GRU, Linear, ReLU, Sequential
import torch_geometric.transforms as T
from torch_geometric.datasets import QM9
from torch_geometric.loader import DataLoader
from torch_geometric.nn import NNConv, Set2Set
from torch_geometric.utils import remove_self_loops
target = 0
dim = 64
class MyTransform:
def __call__(self, data):
data = copy.copy(data)
data.y = data.y[:, target] # Specify target.
return data
class Complete:
def __call__(self, data):
data = copy.copy(data)
device = data.edge_index.device
row = torch.arange(data.num_nodes, dtype=torch.long, device=device)
col = torch.arange(data.num_nodes, dtype=torch.long, device=device)
row = row.view(-1, 1).repeat(1, data.num_nodes).view(-1)
col = col.repeat(data.num_nodes)
edge_index = torch.stack([row, col], dim=0)
edge_attr = None
if data.edge_attr is not None:
idx = data.edge_index[0] * data.num_nodes + data.edge_index[1]
size = list(data.edge_attr.size())
size[0] = data.num_nodes * data.num_nodes
edge_attr = data.edge_attr.new_zeros(size)
edge_attr[idx] = data.edge_attr
edge_index, edge_attr = remove_self_loops(edge_index, edge_attr)
data.edge_attr = edge_attr
data.edge_index = edge_index
return data
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'QM9')
transform = T.Compose([MyTransform(), Complete(), T.Distance(norm=False)])
dataset = QM9(path, transform=transform).shuffle()
# Normalize targets to mean = 0 and std = 1.
mean = dataset.data.y.mean(dim=0, keepdim=True)
std = dataset.data.y.std(dim=0, keepdim=True)
dataset.data.y = (dataset.data.y - mean) / std
mean, std = mean[:, target].item(), std[:, target].item()
# Split datasets.
test_dataset = dataset[:10000]
val_dataset = dataset[10000:20000]
train_dataset = dataset[20000:]
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False)
val_loader = DataLoader(val_dataset, batch_size=128, shuffle=False)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
self.lin0 = torch.nn.Linear(dataset.num_features, dim)
nn = Sequential(Linear(5, 128), ReLU(), Linear(128, dim * dim))
self.conv = NNConv(dim, dim, nn, aggr='mean')
self.gru = GRU(dim, dim)
self.set2set = Set2Set(dim, processing_steps=3)
self.lin1 = torch.nn.Linear(2 * dim, dim)
self.lin2 = torch.nn.Linear(dim, 1)
def forward(self, data):
out = F.relu(self.lin0(data.x))
h = out.unsqueeze(0)
for i in range(3):
m = F.relu(self.conv(out, data.edge_index, data.edge_attr))
out, h = self.gru(m.unsqueeze(0), h)
out = out.squeeze(0)
out = self.set2set(out, data.batch)
out = F.relu(self.lin1(out))
out = self.lin2(out)
return out.view(-1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',
factor=0.7, patience=5,
min_lr=0.00001)
def train(epoch):
model.train()
loss_all = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
loss = F.mse_loss(model(data), data.y)
loss.backward()
loss_all += loss.item() * data.num_graphs
optimizer.step()
return loss_all / len(train_loader.dataset)
def test(loader):
model.eval()
error = 0
for data in loader:
data = data.to(device)
error += (model(data) * std - data.y * std).abs().sum().item() # MAE
return error / len(loader.dataset)
best_val_error = None
for epoch in range(1, 301):
lr = scheduler.optimizer.param_groups[0]['lr']
loss = train(epoch)
val_error = test(val_loader)
scheduler.step(val_error)
if best_val_error is None or val_error <= best_val_error:
test_error = test(test_loader)
best_val_error = val_error
print(f'Epoch: {epoch:03d}, LR: {lr:7f}, Loss: {loss:.7f}, '
f'Val MAE: {val_error:.7f}, Test MAE: {test_error:.7f}')
|