1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
import argparse
import os.path as osp
import torch
from torch_geometric.datasets import QM9
from torch_geometric.loader import DataLoader
from torch_geometric.nn import DimeNet, DimeNetPlusPlus
parser = argparse.ArgumentParser()
parser.add_argument('--use_dimenet_plus_plus', action='store_true')
args = parser.parse_args()
Model = DimeNetPlusPlus if args.use_dimenet_plus_plus else DimeNet
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'QM9')
dataset = QM9(path)
# DimeNet uses the atomization energy for targets U0, U, H, and G, i.e.:
# 7 -> 12, 8 -> 13, 9 -> 14, 10 -> 15
idx = torch.tensor([0, 1, 2, 3, 4, 5, 6, 12, 13, 14, 15, 11])
dataset.data.y = dataset.data.y[:, idx]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for target in range(12):
# Skip target \delta\epsilon, since it can be computed via
# \epsilon_{LUMO} - \epsilon_{HOMO}:
if target == 4:
continue
model, datasets = Model.from_qm9_pretrained(path, dataset, target)
train_dataset, val_dataset, test_dataset = datasets
model = model.to(device)
loader = DataLoader(test_dataset, batch_size=256)
maes = []
for data in loader:
data = data.to(device)
with torch.no_grad():
pred = model(data.z, data.pos, data.batch)
mae = (pred.view(-1) - data.y[:, target]).abs()
maes.append(mae)
mae = torch.cat(maes, dim=0)
# Report meV instead of eV:
mae = 1000 * mae if target in [2, 3, 4, 6, 7, 8, 9, 10] else mae
print(f'Target: {target:02d}, MAE: {mae.mean():.5f} ± {mae.std():.5f}')
|