1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
|
import argparse
import os.path as osp
import torch
from tqdm import tqdm
from torch_geometric.datasets import QM9
from torch_geometric.loader import DataLoader
from torch_geometric.nn import SchNet
parser = argparse.ArgumentParser()
parser.add_argument('--cutoff', type=float, default=10.0,
help='Cutoff distance for interatomic interactions')
args = parser.parse_args()
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'QM9')
dataset = QM9(path)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for target in range(12):
model, datasets = SchNet.from_qm9_pretrained(path, dataset, target)
train_dataset, val_dataset, test_dataset = datasets
model = model.to(device)
loader = DataLoader(test_dataset, batch_size=256)
maes = []
for data in tqdm(loader):
data = data.to(device)
with torch.no_grad():
pred = model(data.z, data.pos, data.batch)
mae = (pred.view(-1) - data.y[:, target]).abs()
maes.append(mae)
mae = torch.cat(maes, dim=0)
# Report meV instead of eV.
mae = 1000 * mae if target in [2, 3, 4, 6, 7, 8, 9, 10] else mae
print(f'Target: {target:02d}, MAE: {mae.mean():.5f} ± {mae.std():.5f}')
|