File: multi_gpu_quiver.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (145 lines) | stat: -rw-r--r-- 5,614 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# This script shows how to use Quiver in an existing PyG example:
# https://github.com/pyg-team/pytorch_geometric/blob/master/examples/multi_gpu/distributed_sampling.py
import os

import quiver
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel
from tqdm import tqdm

from torch_geometric.datasets import Reddit
from torch_geometric.loader import NeighborSampler
from torch_geometric.nn import SAGEConv


class SAGE(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels,
                 num_layers=2):
        super().__init__()
        self.num_layers = num_layers

        self.convs = torch.nn.ModuleList()
        self.convs.append(SAGEConv(in_channels, hidden_channels))
        for _ in range(self.num_layers - 2):
            self.convs.append(SAGEConv(hidden_channels, hidden_channels))
        self.convs.append(SAGEConv(hidden_channels, out_channels))

    def forward(self, x, adjs):
        for i, (edge_index, _, size) in enumerate(adjs):
            x_target = x[:size[1]]  # Target nodes are always placed first.
            x = self.convs[i]((x, x_target), edge_index)
            if i != self.num_layers - 1:
                x = F.relu(x)
                x = F.dropout(x, p=0.5, training=self.training)
        return x.log_softmax(dim=-1)

    @torch.no_grad()
    def inference(self, x_all, device, subgraph_loader):
        pbar = tqdm(total=x_all.size(0) * self.num_layers)
        pbar.set_description('Evaluating')

        for i in range(self.num_layers):
            xs = []
            for batch_size, n_id, adj in subgraph_loader:
                edge_index, _, size = adj.to(device)
                x = x_all[n_id].to(device)
                x_target = x[:size[1]]
                x = self.convs[i]((x, x_target), edge_index)
                if i != self.num_layers - 1:
                    x = F.relu(x)
                xs.append(x.cpu())

                pbar.update(batch_size)

            x_all = torch.cat(xs, dim=0)

        pbar.close()

        return x_all


def run(rank, world_size, dataset, quiver_feature, quiver_sampler):
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '12355'
    dist.init_process_group('nccl', rank=rank, world_size=world_size)
    torch.cuda.set_device(rank)

    data = dataset[0]
    train_idx = data.train_mask.nonzero(as_tuple=False).view(-1)
    train_idx = train_idx.split(train_idx.size(0) // world_size)[rank]

    train_loader = torch.utils.data.DataLoader(train_idx, batch_size=1024,
                                               shuffle=True, num_workers=0)

    if rank == 0:
        subgraph_loader = NeighborSampler(data.edge_index, node_idx=None,
                                          sizes=[-1], batch_size=2048,
                                          shuffle=False, num_workers=6)

    torch.manual_seed(12345)
    model = SAGE(dataset.num_features, 256, dataset.num_classes).to(rank)
    model = DistributedDataParallel(model, device_ids=[rank])
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

    y = data.y.to(rank)

    for epoch in range(1, 21):
        model.train()

        for seeds in train_loader:
            n_id, batch_size, adjs = quiver_sampler.sample(seeds)
            adjs = [adj.to(rank) for adj in adjs]

            optimizer.zero_grad()
            out = model(quiver_feature[n_id].to(rank), adjs)
            loss = F.nll_loss(out, y[n_id[:batch_size]])
            loss.backward()
            optimizer.step()

        dist.barrier()

        if rank == 0:
            print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')

        if rank == 0 and epoch % 5 == 0:  # We evaluate on a single GPU for now
            model.eval()
            with torch.no_grad():
                out = model.module.inference(quiver_feature, rank,
                                             subgraph_loader)
            res = out.argmax(dim=-1) == data.y
            acc1 = int(res[data.train_mask].sum()) / int(data.train_mask.sum())
            acc2 = int(res[data.val_mask].sum()) / int(data.val_mask.sum())
            acc3 = int(res[data.test_mask].sum()) / int(data.test_mask.sum())
            print(f'Train: {acc1:.4f}, Val: {acc2:.4f}, Test: {acc3:.4f}')

        dist.barrier()

    dist.destroy_process_group()


if __name__ == '__main__':
    dataset = Reddit('../../data/Reddit')
    data = dataset[0]
    world_size = torch.cuda.device_count()
    print('Let\'s use', world_size, 'GPUs!')

    ########################################################################
    # The below code enable Quiver for PyG.
    # Please refer to: https://torch-quiver.readthedocs.io/en/latest/api/ for
    # how to configure the CSRTopo, Sampler and Feature of Quiver.
    ########################################################################
    csr_topo = quiver.CSRTopo(data.edge_index)  # Quiver
    quiver_sampler = quiver.pyg.GraphSageSampler(csr_topo, [25, 10], 0,
                                                 mode='GPU')  # Quiver
    quiver_feature = quiver.Feature(rank=0,
                                    device_list=list(range(world_size)),
                                    device_cache_size="2G",
                                    cache_policy="device_replicate",
                                    csr_topo=csr_topo)  # Quiver
    quiver_feature.from_cpu_tensor(data.x)  # Quiver

    mp.spawn(run, args=(world_size, dataset, quiver_feature, quiver_sampler),
             nprocs=world_size, join=True)