1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
# This script shows how to use Quiver in an existing PyG example:
# https://github.com/pyg-team/pytorch_geometric/blob/master/examples/multi_gpu/distributed_sampling.py
import os
import quiver
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel
from tqdm import tqdm
from torch_geometric.datasets import Reddit
from torch_geometric.loader import NeighborSampler
from torch_geometric.nn import SAGEConv
class SAGE(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels,
num_layers=2):
super().__init__()
self.num_layers = num_layers
self.convs = torch.nn.ModuleList()
self.convs.append(SAGEConv(in_channels, hidden_channels))
for _ in range(self.num_layers - 2):
self.convs.append(SAGEConv(hidden_channels, hidden_channels))
self.convs.append(SAGEConv(hidden_channels, out_channels))
def forward(self, x, adjs):
for i, (edge_index, _, size) in enumerate(adjs):
x_target = x[:size[1]] # Target nodes are always placed first.
x = self.convs[i]((x, x_target), edge_index)
if i != self.num_layers - 1:
x = F.relu(x)
x = F.dropout(x, p=0.5, training=self.training)
return x.log_softmax(dim=-1)
@torch.no_grad()
def inference(self, x_all, device, subgraph_loader):
pbar = tqdm(total=x_all.size(0) * self.num_layers)
pbar.set_description('Evaluating')
for i in range(self.num_layers):
xs = []
for batch_size, n_id, adj in subgraph_loader:
edge_index, _, size = adj.to(device)
x = x_all[n_id].to(device)
x_target = x[:size[1]]
x = self.convs[i]((x, x_target), edge_index)
if i != self.num_layers - 1:
x = F.relu(x)
xs.append(x.cpu())
pbar.update(batch_size)
x_all = torch.cat(xs, dim=0)
pbar.close()
return x_all
def run(rank, world_size, dataset, quiver_feature, quiver_sampler):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group('nccl', rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
data = dataset[0]
train_idx = data.train_mask.nonzero(as_tuple=False).view(-1)
train_idx = train_idx.split(train_idx.size(0) // world_size)[rank]
train_loader = torch.utils.data.DataLoader(train_idx, batch_size=1024,
shuffle=True, num_workers=0)
if rank == 0:
subgraph_loader = NeighborSampler(data.edge_index, node_idx=None,
sizes=[-1], batch_size=2048,
shuffle=False, num_workers=6)
torch.manual_seed(12345)
model = SAGE(dataset.num_features, 256, dataset.num_classes).to(rank)
model = DistributedDataParallel(model, device_ids=[rank])
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
y = data.y.to(rank)
for epoch in range(1, 21):
model.train()
for seeds in train_loader:
n_id, batch_size, adjs = quiver_sampler.sample(seeds)
adjs = [adj.to(rank) for adj in adjs]
optimizer.zero_grad()
out = model(quiver_feature[n_id].to(rank), adjs)
loss = F.nll_loss(out, y[n_id[:batch_size]])
loss.backward()
optimizer.step()
dist.barrier()
if rank == 0:
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')
if rank == 0 and epoch % 5 == 0: # We evaluate on a single GPU for now
model.eval()
with torch.no_grad():
out = model.module.inference(quiver_feature, rank,
subgraph_loader)
res = out.argmax(dim=-1) == data.y
acc1 = int(res[data.train_mask].sum()) / int(data.train_mask.sum())
acc2 = int(res[data.val_mask].sum()) / int(data.val_mask.sum())
acc3 = int(res[data.test_mask].sum()) / int(data.test_mask.sum())
print(f'Train: {acc1:.4f}, Val: {acc2:.4f}, Test: {acc3:.4f}')
dist.barrier()
dist.destroy_process_group()
if __name__ == '__main__':
dataset = Reddit('../../data/Reddit')
data = dataset[0]
world_size = torch.cuda.device_count()
print('Let\'s use', world_size, 'GPUs!')
########################################################################
# The below code enable Quiver for PyG.
# Please refer to: https://torch-quiver.readthedocs.io/en/latest/api/ for
# how to configure the CSRTopo, Sampler and Feature of Quiver.
########################################################################
csr_topo = quiver.CSRTopo(data.edge_index) # Quiver
quiver_sampler = quiver.pyg.GraphSageSampler(csr_topo, [25, 10], 0,
mode='GPU') # Quiver
quiver_feature = quiver.Feature(rank=0,
device_list=list(range(world_size)),
device_cache_size="2G",
cache_policy="device_replicate",
csr_topo=csr_topo) # Quiver
quiver_feature.from_cpu_tensor(data.x) # Quiver
mp.spawn(run, args=(world_size, dataset, quiver_feature, quiver_sampler),
nprocs=world_size, join=True)
|