1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
"""An adaptation of RandLA-Net to the classification task, which was not
addressed in the `"RandLA-Net: Efficient Semantic Segmentation of Large-Scale
Point Clouds" <https://arxiv.org/abs/1911.11236>`_ paper.
"""
import os.path as osp
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.nn import Linear
from tqdm import tqdm
import torch_geometric.transforms as T
from torch_geometric.datasets import ModelNet
from torch_geometric.loader import DataLoader
from torch_geometric.nn import MLP
from torch_geometric.nn.aggr import MaxAggregation
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.pool import knn_graph
from torch_geometric.nn.pool.decimation import decimation_indices
from torch_geometric.typing import WITH_TORCH_CLUSTER
from torch_geometric.utils import softmax
if not WITH_TORCH_CLUSTER:
quit("This example requires 'torch-cluster'")
# Default activation and batch norm parameters used by RandLA-Net:
lrelu02_kwargs = {'negative_slope': 0.2}
bn099_kwargs = {'momentum': 0.01, 'eps': 1e-6}
class SharedMLP(MLP):
"""SharedMLP following RandLA-Net paper."""
def __init__(self, *args, **kwargs):
# BN + Act always active even at last layer.
kwargs['plain_last'] = False
# LeakyRelu with 0.2 slope by default.
kwargs['act'] = kwargs.get('act', 'LeakyReLU')
kwargs['act_kwargs'] = kwargs.get('act_kwargs', lrelu02_kwargs)
# BatchNorm with 1 - 0.99 = 0.01 momentum
# and 1e-6 eps by defaut (tensorflow momentum != pytorch momentum)
kwargs['norm_kwargs'] = kwargs.get('norm_kwargs', bn099_kwargs)
super().__init__(*args, **kwargs)
class LocalFeatureAggregation(MessagePassing):
"""Positional encoding of points in a neighborhood."""
def __init__(self, channels):
super().__init__(aggr='add')
self.mlp_encoder = SharedMLP([10, channels // 2])
self.mlp_attention = SharedMLP([channels, channels], bias=False,
act=None, norm=None)
self.mlp_post_attention = SharedMLP([channels, channels])
def forward(self, edge_index, x, pos):
out = self.propagate(edge_index, x=x, pos=pos) # N, d_out
out = self.mlp_post_attention(out) # N, d_out
return out
def message(self, x_j: Tensor, pos_i: Tensor, pos_j: Tensor,
index: Tensor) -> Tensor:
"""Local Spatial Encoding (locSE) and attentive pooling of features.
Args:
x_j (Tensor): neighboors features (K,d)
pos_i (Tensor): centroid position (repeated) (K,3)
pos_j (Tensor): neighboors positions (K,3)
index (Tensor): index of centroid positions
(e.g. [0,...,0,1,...,1,...,N,...,N])
Returns:
(Tensor): locSE weighted by feature attention scores.
"""
# Encode local neighboorhod structural information
pos_diff = pos_j - pos_i
distance = torch.sqrt((pos_diff * pos_diff).sum(1, keepdim=True))
relative_infos = torch.cat([pos_i, pos_j, pos_diff, distance],
dim=1) # N * K, d
local_spatial_encoding = self.mlp_encoder(relative_infos) # N * K, d
local_features = torch.cat([x_j, local_spatial_encoding],
dim=1) # N * K, 2d
# Attention will weight the different features of x
# along the neighborhood dimension.
att_features = self.mlp_attention(local_features) # N * K, d_out
att_scores = softmax(att_features, index=index) # N * K, d_out
return att_scores * local_features # N * K, d_out
class DilatedResidualBlock(torch.nn.Module):
def __init__(
self,
num_neighbors,
d_in: int,
d_out: int,
):
super().__init__()
self.num_neighbors = num_neighbors
self.d_in = d_in
self.d_out = d_out
# MLP on input
self.mlp1 = SharedMLP([d_in, d_out // 8])
# MLP on input, and the result is summed with the output of mlp2
self.shortcut = SharedMLP([d_in, d_out], act=None)
# MLP on output
self.mlp2 = SharedMLP([d_out // 2, d_out], act=None)
self.lfa1 = LocalFeatureAggregation(d_out // 4)
self.lfa2 = LocalFeatureAggregation(d_out // 2)
self.lrelu = torch.nn.LeakyReLU(**lrelu02_kwargs)
def forward(self, x, pos, batch):
edge_index = knn_graph(pos, self.num_neighbors, batch=batch, loop=True)
shortcut_of_x = self.shortcut(x) # N, d_out
x = self.mlp1(x) # N, d_out//8
x = self.lfa1(edge_index, x, pos) # N, d_out//2
x = self.lfa2(edge_index, x, pos) # N, d_out//2
x = self.mlp2(x) # N, d_out
x = self.lrelu(x + shortcut_of_x) # N, d_out
return x, pos, batch
def decimate(tensors, ptr: Tensor, decimation_factor: int):
"""Decimates each element of the given tuple of tensors."""
idx_decim, ptr_decim = decimation_indices(ptr, decimation_factor)
tensors_decim = tuple(tensor[idx_decim] for tensor in tensors)
return tensors_decim, ptr_decim
class Net(torch.nn.Module):
def __init__(
self,
num_features,
num_classes,
decimation: int = 4,
num_neighboors: int = 16,
return_logits: bool = False,
):
super().__init__()
self.decimation = decimation
# An option to return logits instead of log probabilities:
self.return_logits = return_logits
self.fc0 = Linear(in_features=num_features, out_features=8)
# 2 DilatedResidualBlock converges better than 4 on ModelNet.
self.block1 = DilatedResidualBlock(num_neighboors, 8, 32)
self.block2 = DilatedResidualBlock(num_neighboors, 32, 128)
self.mlp1 = SharedMLP([128, 128])
self.max_agg = MaxAggregation()
self.mlp_classif = SharedMLP([128, 32], dropout=[0.5])
self.fc_classif = Linear(32, num_classes)
def forward(self, x, pos, batch, ptr):
x = x if x is not None else pos
b1 = self.block1(self.fc0(x), pos, batch)
b1_decimated, ptr1 = decimate(b1, ptr, self.decimation)
b2 = self.block2(*b1_decimated)
b2_decimated, _ = decimate(b2, ptr1, self.decimation)
x = self.mlp1(b2_decimated[0])
x = self.max_agg(x, b2_decimated[2])
x = self.mlp_classif(x)
logits = self.fc_classif(x)
return logits if self.return_logits else logits.log_softmax(dim=-1)
def train(epoch):
model.train()
total_loss = 0
for data in tqdm(train_loader):
data = data.to(device)
optimizer.zero_grad()
out = model(data.x, data.pos, data.batch, data.ptr)
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
total_loss += data.num_graphs * float(loss)
return total_loss / len(train_loader.dataset)
@torch.no_grad()
def test(loader):
model.eval()
correct = 0
for data in loader:
data = data.to(device)
out = model(data.x, data.pos, data.batch, data.ptr)
correct += int((out.argmax(dim=-1) == data.y).sum())
return correct / len(loader.dataset)
if __name__ == '__main__':
path = osp.dirname(osp.realpath(__file__))
path = osp.join(path, '..', 'data/ModelNet10')
pre_transform, transform = T.NormalizeScale(), T.SamplePoints(1024)
train_dataset = ModelNet(path, '10', True, transform, pre_transform)
test_dataset = ModelNet(path, '10', False, transform, pre_transform)
train_loader = DataLoader(train_dataset, 32, shuffle=True, num_workers=6)
test_loader = DataLoader(test_dataset, 32, shuffle=False, num_workers=6)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(3, train_dataset.num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20,
gamma=0.5)
for epoch in range(1, 201):
loss = train(epoch)
test_acc = test(test_loader)
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Test: {test_acc:.4f}')
scheduler.step()
|