File: reddit.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (121 lines) | stat: -rw-r--r-- 4,263 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import copy
import os.path as osp
import time

import torch
import torch.nn.functional as F
from tqdm import tqdm

from torch_geometric.datasets import Reddit
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import SAGEConv

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'Reddit')
dataset = Reddit(path)

# Already send node features/labels to GPU for faster access during sampling:
data = dataset[0].to(device, 'x', 'y')

kwargs = {'batch_size': 1024, 'num_workers': 6, 'persistent_workers': True}
train_loader = NeighborLoader(data, input_nodes=data.train_mask,
                              num_neighbors=[25, 10], shuffle=True, **kwargs)

subgraph_loader = NeighborLoader(copy.copy(data), input_nodes=None,
                                 num_neighbors=[-1], shuffle=False, **kwargs)

# No need to maintain these features during evaluation:
del subgraph_loader.data.x, subgraph_loader.data.y
# Add global node index information.
subgraph_loader.data.num_nodes = data.num_nodes
subgraph_loader.data.n_id = torch.arange(data.num_nodes)


class SAGE(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super().__init__()
        self.convs = torch.nn.ModuleList()
        self.convs.append(SAGEConv(in_channels, hidden_channels))
        self.convs.append(SAGEConv(hidden_channels, out_channels))

    def forward(self, x, edge_index):
        for i, conv in enumerate(self.convs):
            x = conv(x, edge_index)
            if i < len(self.convs) - 1:
                x = x.relu_()
                x = F.dropout(x, p=0.5, training=self.training)
        return x

    @torch.no_grad()
    def inference(self, x_all, subgraph_loader):
        pbar = tqdm(total=len(subgraph_loader.dataset) * len(self.convs))
        pbar.set_description('Evaluating')

        # Compute representations of nodes layer by layer, using *all*
        # available edges. This leads to faster computation in contrast to
        # immediately computing the final representations of each batch:
        for i, conv in enumerate(self.convs):
            xs = []
            for batch in subgraph_loader:
                x = x_all[batch.n_id.to(x_all.device)].to(device)
                x = conv(x, batch.edge_index.to(device))
                if i < len(self.convs) - 1:
                    x = x.relu_()
                xs.append(x[:batch.batch_size].cpu())
                pbar.update(batch.batch_size)
            x_all = torch.cat(xs, dim=0)
        pbar.close()
        return x_all


model = SAGE(dataset.num_features, 256, dataset.num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)


def train(epoch):
    model.train()

    pbar = tqdm(total=int(len(train_loader.dataset)))
    pbar.set_description(f'Epoch {epoch:02d}')

    total_loss = total_correct = total_examples = 0
    for batch in train_loader:
        optimizer.zero_grad()
        y = batch.y[:batch.batch_size]
        y_hat = model(batch.x, batch.edge_index.to(device))[:batch.batch_size]
        loss = F.cross_entropy(y_hat, y)
        loss.backward()
        optimizer.step()

        total_loss += float(loss) * batch.batch_size
        total_correct += int((y_hat.argmax(dim=-1) == y).sum())
        total_examples += batch.batch_size
        pbar.update(batch.batch_size)
    pbar.close()

    return total_loss / total_examples, total_correct / total_examples


@torch.no_grad()
def test():
    model.eval()
    y_hat = model.inference(data.x, subgraph_loader).argmax(dim=-1)
    y = data.y.to(y_hat.device)

    accs = []
    for mask in [data.train_mask, data.val_mask, data.test_mask]:
        accs.append(int((y_hat[mask] == y[mask]).sum()) / int(mask.sum()))
    return accs


times = []
for epoch in range(1, 11):
    start = time.time()
    loss, acc = train(epoch)
    print(f'Epoch {epoch:02d}, Loss: {loss:.4f}, Approx. Train: {acc:.4f}')
    train_acc, val_acc, test_acc = test()
    print(f'Epoch: {epoch:02d}, Train: {train_acc:.4f}, Val: {val_acc:.4f}, '
          f'Test: {test_acc:.4f}')
    times.append(time.time() - start)
print(f"Median time per epoch: {torch.tensor(times).median():.4f}s")