1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
import argparse
import copy
import csv
import os.path as osp
import random
import numpy as np
import yaml
from torch_geometric.graphgym.utils.comp_budget import match_baseline_cfg
from torch_geometric.graphgym.utils.io import (
makedirs_rm_exist,
string_to_python,
)
random.seed(123)
def parse_args():
"""Parses the arguments."""
parser = argparse.ArgumentParser()
parser.add_argument('--config', dest='config',
help='the base configuration file used for edit',
default=None, type=str)
parser.add_argument('--grid', dest='grid',
help='configuration file for grid search',
required=True, type=str)
parser.add_argument('--sample_alias', dest='sample_alias',
help='configuration file for sample alias',
default=None, required=False, type=str)
parser.add_argument('--sample_num', dest='sample_num',
help='Number of random samples in the space',
default=10, type=int)
parser.add_argument('--out_dir', dest='out_dir',
help='output directory for generated config files',
default='configs', type=str)
parser.add_argument(
'--config_budget', dest='config_budget',
help='the base configuration file used for matching computation',
default=None, type=str)
return parser.parse_args()
def get_fname(string):
if string is not None:
return string.split('/')[-1].split('.')[0]
else:
return 'default'
def grid2list(grid):
list_in = [[]]
for grid_temp in grid:
list_out = []
for val in grid_temp:
for list_temp in list_in:
list_out.append(list_temp + [val])
list_in = list_out
return list_in
def lists_distance(l1, l2):
assert len(l1) == len(l2)
dist = 0
for i in range(len(l1)):
if l1[i] != l2[i]:
dist += 1
return dist
def grid2list_sample(grid, sample=10):
configs = []
while len(configs) < sample:
config = []
for grid_temp in grid:
config.append(random.choice(grid_temp))
if config not in configs:
configs.append(config)
return configs
def load_config(fname):
if fname is not None:
with open(fname) as f:
return yaml.load(f, Loader=yaml.FullLoader)
else:
return {}
def load_search_file(fname):
with open(fname) as f:
out_raw = csv.reader(f, delimiter=' ')
outs = []
out = []
for row in out_raw:
if '#' in row:
continue
elif len(row) > 0:
assert len(row) == 3, \
'Exact 1 space between each grid argument file' \
'And no spaces within each argument is allowed'
out.append(row)
else:
if len(out) > 0:
outs.append(out)
out = []
if len(out) > 0:
outs.append(out)
return outs
def load_alias_file(fname):
with open(fname) as f:
file = csv.reader(f, delimiter=' ')
for line in file:
break
return line
def exclude_list_id(list, id):
return [list[i] for i in range(len(list)) if i != id]
def gen_grid(args, config, config_budget={}):
task_name = f'{get_fname(args.config)}_grid_{get_fname(args.grid)}'
fname_start = get_fname(args.config)
out_dir = f'{args.out_dir}/{task_name}'
makedirs_rm_exist(out_dir)
config['out_dir'] = osp.join(config['out_dir'], task_name)
outs = load_search_file(args.grid)
for i, out in enumerate(outs):
vars_label = [row[0].split('.') for row in out]
vars_alias = [row[1] for row in out]
vars_value = grid2list([string_to_python(row[2]) for row in out])
if i == 0:
print(f'Variable label: {vars_label}')
print(f'Variable alias: {vars_alias}')
for vars in vars_value:
config_out = config.copy()
fname_out = fname_start
for id, var in enumerate(vars):
if len(vars_label[id]) == 1:
config_out[vars_label[id][0]] = var
elif len(vars_label[id]) == 2:
if vars_label[id][0] in config_out: # if key1 exist
config_out[vars_label[id][0]][vars_label[id][1]] = var
else:
config_out[vars_label[id][0]] = {
vars_label[id][1]: var
}
else:
raise ValueError('Only 2-level config files are supported')
var_repr = str(var).strip("[]").strip("''")
fname_out += f'-{vars_alias[id]}={var_repr}'
if len(config_budget) > 0:
config_out = match_baseline_cfg(config_out, config_budget)
with open(f'{out_dir}/{fname_out}.yaml', 'w') as f:
yaml.dump(config_out, f, default_flow_style=False)
print(f'{len(vars_value)} configurations saved to: {out_dir}')
def gen_grid_sample(args, config, config_budget={}, compare_alias_list=[]):
task_name = f'{get_fname(args.config)}_grid_{get_fname(args.grid)}'
fname_start = get_fname(args.config)
out_dir = f'{args.out_dir}/{task_name}'
makedirs_rm_exist(out_dir)
config['out_dir'] = osp.join(config['out_dir'], task_name)
outs = load_search_file(args.grid)
counts = []
for out in outs:
vars_grid = [string_to_python(row[2]) for row in out]
count = 1
for var in vars_grid:
count *= len(var)
counts.append(count)
counts = np.array(counts)
print('Total size of each chunk of experiment space:', counts)
counts = counts / np.sum(counts)
counts = np.round(counts * args.sample_num)
counts[0] += args.sample_num - np.sum(counts)
print('Total sample size of each chunk of experiment space:', counts)
for i, out in enumerate(outs):
vars_label = [row[0].split('.') for row in out]
vars_alias = [row[1] for row in out]
if i == 0:
print(f'Variable label: {vars_label}')
print(f'Variable alias: {vars_alias}')
vars_grid = [string_to_python(row[2]) for row in out]
for alias in compare_alias_list:
alias_id = vars_alias.index(alias)
vars_grid_select = copy.deepcopy(vars_grid[alias_id])
vars_grid[alias_id] = [vars_grid[alias_id][0]]
vars_value = grid2list_sample(vars_grid, counts[i])
vars_value_new = []
for vars in vars_value:
for grid in vars_grid_select:
vars[alias_id] = grid
vars_value_new.append(copy.deepcopy(vars))
vars_value = vars_value_new
vars_grid[alias_id] = vars_grid_select
for vars in vars_value:
config_out = config.copy()
fname_out = fname_start + f'-sample={vars_alias[alias_id]}'
for id, var in enumerate(vars):
if len(vars_label[id]) == 1:
config_out[vars_label[id][0]] = var
elif len(vars_label[id]) == 2:
if vars_label[id][0] in config_out: # if key1 exist
config_out[vars_label[id][0]][vars_label[id]
[1]] = var
else:
config_out[vars_label[id][0]] = {
vars_label[id][1]: var
}
else:
raise ValueError(
'Only 2-level config files are supported')
var_repr = str(var).strip("[]").strip("''")
fname_out += f'-{vars_alias[id]}={var_repr}'
if len(config_budget) > 0:
config_out = match_baseline_cfg(config_out, config_budget,
verbose=False)
with open(f'{out_dir}/{fname_out}.yaml', "w") as f:
yaml.dump(config_out, f, default_flow_style=False)
print(f'Chunk {i + 1}/{len(outs)}: '
f'Perturbing design dimension {alias}, '
f'{len(vars_value)} configurations saved to: {out_dir}')
args = parse_args()
config = load_config(args.config)
config_budget = load_config(args.config_budget)
if args.sample_alias is None:
gen_grid(args, config, config_budget)
else:
alias_list = load_alias_file(args.sample_alias)
gen_grid_sample(args, config, config_budget, alias_list)
|