1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
import math
import os.path as osp
import pytest
import torch
from torch_geometric import EdgeIndex, Index
from torch_geometric.data import Data, RocksDatabase, SQLiteDatabase
from torch_geometric.data.database import TensorInfo
from torch_geometric.profile import benchmark
from torch_geometric.testing import has_package, withPackage
AVAILABLE_DATABASES = []
if has_package('sqlite3'):
AVAILABLE_DATABASES.append(SQLiteDatabase)
if has_package('rocksdict'):
AVAILABLE_DATABASES.append(RocksDatabase)
@pytest.mark.parametrize('Database', AVAILABLE_DATABASES)
@pytest.mark.parametrize('batch_size', [None, 1])
def test_database_single_tensor(tmp_path, Database, batch_size):
kwargs = dict(path=osp.join(tmp_path, 'storage.db'))
if Database == SQLiteDatabase:
kwargs['name'] = 'test_table'
db = Database(**kwargs)
assert db.schema == {0: object}
try:
assert len(db) == 0
assert str(db) == f'{Database.__name__}(0)'
except NotImplementedError:
assert str(db) == f'{Database.__name__}()'
data = torch.randn(5)
db.insert(0, data)
try:
assert len(db) == 1
except NotImplementedError:
pass
assert torch.equal(db.get(0), data)
indices = torch.tensor([1, 2])
data_list = torch.randn(2, 5)
db.multi_insert(indices, data_list, batch_size=batch_size)
try:
assert len(db) == 3
except NotImplementedError:
pass
out_list = db.multi_get(indices, batch_size=batch_size)
assert isinstance(out_list, list)
assert len(out_list) == 2
assert torch.equal(out_list[0], data_list[0])
assert torch.equal(out_list[1], data_list[1])
db.close()
@pytest.mark.parametrize('Database', AVAILABLE_DATABASES)
def test_database_schema(tmp_path, Database):
kwargs = dict(name='test_table') if Database == SQLiteDatabase else {}
path = osp.join(tmp_path, 'tuple_storage.db')
schema = (int, float, str, dict(dtype=torch.float, size=(2, -1)), object)
db = Database(path, schema=schema, **kwargs)
assert db.schema == {
0: int,
1: float,
2: str,
3: TensorInfo(dtype=torch.float, size=(2, -1)),
4: object,
}
data1 = (1, 0.1, 'a', torch.randn(2, 8), Data(x=torch.randn(8)))
data2 = (2, float('inf'), 'b', torch.randn(2, 16), Data(x=torch.randn(8)))
data3 = (3, float('NaN'), 'c', torch.randn(2, 32), Data(x=torch.randn(8)))
db.insert(0, data1)
db.multi_insert([1, 2], [data2, data3])
out1 = db.get(0)
out2, out3 = db.multi_get([1, 2])
for out, data in zip([out1, out2, out3], [data1, data2, data3]):
assert out[0] == data[0]
if math.isnan(data[1]):
assert math.isnan(out[1])
else:
assert out[1] == data[1]
assert out[2] == data[2]
assert torch.equal(out[3], data[3])
assert isinstance(out[4], Data) and len(out[4]) == 1
assert torch.equal(out[4].x, data[4].x)
db.close()
path = osp.join(tmp_path, 'dict_storage.db')
schema = {
'int': int,
'float': float,
'str': str,
'tensor': dict(dtype=torch.float, size=(2, -1)),
'data': object
}
db = Database(path, schema=schema, **kwargs)
assert db.schema == {
'int': int,
'float': float,
'str': str,
'tensor': TensorInfo(dtype=torch.float, size=(2, -1)),
'data': object,
}
data1 = {
'int': 1,
'float': 0.1,
'str': 'a',
'tensor': torch.randn(2, 8),
'data': Data(x=torch.randn(1, 8)),
}
data2 = {
'int': 2,
'float': 0.2,
'str': 'b',
'tensor': torch.randn(2, 16),
'data': Data(x=torch.randn(2, 8)),
}
data3 = {
'int': 3,
'float': 0.3,
'str': 'c',
'tensor': torch.randn(2, 32),
'data': Data(x=torch.randn(3, 8)),
}
db.insert(0, data1)
db.multi_insert([1, 2], [data2, data3])
out1 = db.get(0)
out2, out3 = db.multi_get([1, 2])
for out, data in zip([out1, out2, out3], [data1, data2, data3]):
assert out['int'] == data['int']
assert out['float'] == data['float']
assert out['str'] == data['str']
assert torch.equal(out['tensor'], data['tensor'])
assert isinstance(out['data'], Data) and len(out['data']) == 1
assert torch.equal(out['data'].x, data['data'].x)
db.close()
@pytest.mark.parametrize('Database', AVAILABLE_DATABASES)
def test_index(tmp_path, Database):
kwargs = dict(name='test_table') if Database == SQLiteDatabase else {}
path = osp.join(tmp_path, 'tuple_storage.db')
schema = dict(dtype=torch.long, is_index=True)
db = Database(path, schema=schema, **kwargs)
assert db.schema == {
0: TensorInfo(dtype=torch.long, is_index=True),
}
index1 = Index([0, 1, 1, 2], dim_size=3, is_sorted=True)
index2 = Index([0, 1, 1, 2, 2, 3], dim_size=None, is_sorted=True)
index3 = Index([], dtype=torch.long)
db.insert(0, index1)
db.multi_insert([1, 2], [index2, index3])
out1 = db.get(0)
out2, out3 = db.multi_get([1, 2])
for out, index in zip([out1, out2, out3], [index1, index2, index3]):
assert index.equal(out)
assert index.dtype == out.dtype
assert index.dim_size == out.dim_size
assert index.is_sorted == out.is_sorted
db.close()
@pytest.mark.parametrize('Database', AVAILABLE_DATABASES)
def test_edge_index(tmp_path, Database):
kwargs = dict(name='test_table') if Database == SQLiteDatabase else {}
path = osp.join(tmp_path, 'tuple_storage.db')
schema = dict(dtype=torch.long, is_edge_index=True)
db = Database(path, schema=schema, **kwargs)
assert db.schema == {
0: TensorInfo(dtype=torch.long, size=(2, -1), is_edge_index=True),
}
adj1 = EdgeIndex(
[[0, 1, 1, 2], [1, 0, 2, 1]],
sparse_size=(3, 3),
sort_order='row',
is_undirected=True,
)
adj2 = EdgeIndex(
[[1, 0, 2, 1, 3, 2], [0, 1, 1, 2, 2, 3]],
sparse_size=(4, 4),
sort_order='col',
)
adj3 = EdgeIndex([[], []], dtype=torch.long)
db.insert(0, adj1)
db.multi_insert([1, 2], [adj2, adj3])
out1 = db.get(0)
out2, out3 = db.multi_get([1, 2])
for out, adj in zip([out1, out2, out3], [adj1, adj2, adj3]):
assert adj.equal(out)
assert adj.dtype == out.dtype
assert adj.sparse_size() == out.sparse_size()
assert adj.sort_order == out.sort_order
assert adj.is_undirected == out.is_undirected
db.close()
@withPackage('sqlite3')
def test_database_syntactic_sugar(tmp_path):
path = osp.join(tmp_path, 'storage.db')
db = SQLiteDatabase(path, name='test_table')
data = torch.randn(5, 16)
db[0] = data[0]
db[1:3] = data[1:3]
db[torch.tensor([3, 4])] = data[torch.tensor([3, 4])]
assert len(db) == 5
assert torch.equal(db[0], data[0])
assert torch.equal(torch.stack(db[:3], dim=0), data[:3])
assert torch.equal(torch.stack(db[3:], dim=0), data[3:])
assert torch.equal(torch.stack(db[1::2], dim=0), data[1::2])
assert torch.equal(torch.stack(db[[4, 3]], dim=0), data[[4, 3]])
assert torch.equal(
torch.stack(db[torch.tensor([4, 3])], dim=0),
data[torch.tensor([4, 3])],
)
assert torch.equal(
torch.stack(db[torch.tensor([4, 4])], dim=0),
data[torch.tensor([4, 4])],
)
if __name__ == '__main__':
import argparse
import tempfile
import time
parser = argparse.ArgumentParser()
parser.add_argument('--numel', type=int, default=100_000)
parser.add_argument('--batch_size', type=int, default=256)
args = parser.parse_args()
data = torch.randn(args.numel, 128)
tmp_dir = tempfile.TemporaryDirectory()
path = osp.join(tmp_dir.name, 'sqlite.db')
sqlite_db = SQLiteDatabase(path, name='test_table')
t = time.perf_counter()
sqlite_db.multi_insert(range(args.numel), data, batch_size=100, log=True)
print(f'Initialized SQLiteDB in {time.perf_counter() - t:.2f} seconds')
path = osp.join(tmp_dir.name, 'rocks.db')
rocks_db = RocksDatabase(path)
t = time.perf_counter()
rocks_db.multi_insert(range(args.numel), data, batch_size=100, log=True)
print(f'Initialized RocksDB in {time.perf_counter() - t:.2f} seconds')
def in_memory_get(data):
index = torch.randint(0, args.numel, (args.batch_size, ))
return data[index]
def db_get(db):
index = torch.randint(0, args.numel, (args.batch_size, ))
return db[index]
benchmark(
funcs=[in_memory_get, db_get, db_get],
func_names=['In-Memory', 'SQLite', 'RocksDB'],
args=[(data, ), (sqlite_db, ), (rocks_db, )],
num_steps=50,
num_warmups=5,
)
tmp_dir.cleanup()
|