File: test_database.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (289 lines) | stat: -rw-r--r-- 8,866 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import math
import os.path as osp

import pytest
import torch

from torch_geometric import EdgeIndex, Index
from torch_geometric.data import Data, RocksDatabase, SQLiteDatabase
from torch_geometric.data.database import TensorInfo
from torch_geometric.profile import benchmark
from torch_geometric.testing import has_package, withPackage

AVAILABLE_DATABASES = []
if has_package('sqlite3'):
    AVAILABLE_DATABASES.append(SQLiteDatabase)
if has_package('rocksdict'):
    AVAILABLE_DATABASES.append(RocksDatabase)


@pytest.mark.parametrize('Database', AVAILABLE_DATABASES)
@pytest.mark.parametrize('batch_size', [None, 1])
def test_database_single_tensor(tmp_path, Database, batch_size):
    kwargs = dict(path=osp.join(tmp_path, 'storage.db'))
    if Database == SQLiteDatabase:
        kwargs['name'] = 'test_table'

    db = Database(**kwargs)
    assert db.schema == {0: object}

    try:
        assert len(db) == 0
        assert str(db) == f'{Database.__name__}(0)'
    except NotImplementedError:
        assert str(db) == f'{Database.__name__}()'

    data = torch.randn(5)
    db.insert(0, data)
    try:
        assert len(db) == 1
    except NotImplementedError:
        pass
    assert torch.equal(db.get(0), data)

    indices = torch.tensor([1, 2])
    data_list = torch.randn(2, 5)
    db.multi_insert(indices, data_list, batch_size=batch_size)
    try:
        assert len(db) == 3
    except NotImplementedError:
        pass
    out_list = db.multi_get(indices, batch_size=batch_size)
    assert isinstance(out_list, list)
    assert len(out_list) == 2
    assert torch.equal(out_list[0], data_list[0])
    assert torch.equal(out_list[1], data_list[1])

    db.close()


@pytest.mark.parametrize('Database', AVAILABLE_DATABASES)
def test_database_schema(tmp_path, Database):
    kwargs = dict(name='test_table') if Database == SQLiteDatabase else {}

    path = osp.join(tmp_path, 'tuple_storage.db')
    schema = (int, float, str, dict(dtype=torch.float, size=(2, -1)), object)
    db = Database(path, schema=schema, **kwargs)
    assert db.schema == {
        0: int,
        1: float,
        2: str,
        3: TensorInfo(dtype=torch.float, size=(2, -1)),
        4: object,
    }

    data1 = (1, 0.1, 'a', torch.randn(2, 8), Data(x=torch.randn(8)))
    data2 = (2, float('inf'), 'b', torch.randn(2, 16), Data(x=torch.randn(8)))
    data3 = (3, float('NaN'), 'c', torch.randn(2, 32), Data(x=torch.randn(8)))
    db.insert(0, data1)
    db.multi_insert([1, 2], [data2, data3])

    out1 = db.get(0)
    out2, out3 = db.multi_get([1, 2])

    for out, data in zip([out1, out2, out3], [data1, data2, data3]):
        assert out[0] == data[0]
        if math.isnan(data[1]):
            assert math.isnan(out[1])
        else:
            assert out[1] == data[1]
        assert out[2] == data[2]
        assert torch.equal(out[3], data[3])
        assert isinstance(out[4], Data) and len(out[4]) == 1
        assert torch.equal(out[4].x, data[4].x)

    db.close()

    path = osp.join(tmp_path, 'dict_storage.db')
    schema = {
        'int': int,
        'float': float,
        'str': str,
        'tensor': dict(dtype=torch.float, size=(2, -1)),
        'data': object
    }
    db = Database(path, schema=schema, **kwargs)
    assert db.schema == {
        'int': int,
        'float': float,
        'str': str,
        'tensor': TensorInfo(dtype=torch.float, size=(2, -1)),
        'data': object,
    }

    data1 = {
        'int': 1,
        'float': 0.1,
        'str': 'a',
        'tensor': torch.randn(2, 8),
        'data': Data(x=torch.randn(1, 8)),
    }
    data2 = {
        'int': 2,
        'float': 0.2,
        'str': 'b',
        'tensor': torch.randn(2, 16),
        'data': Data(x=torch.randn(2, 8)),
    }
    data3 = {
        'int': 3,
        'float': 0.3,
        'str': 'c',
        'tensor': torch.randn(2, 32),
        'data': Data(x=torch.randn(3, 8)),
    }
    db.insert(0, data1)
    db.multi_insert([1, 2], [data2, data3])

    out1 = db.get(0)
    out2, out3 = db.multi_get([1, 2])

    for out, data in zip([out1, out2, out3], [data1, data2, data3]):
        assert out['int'] == data['int']
        assert out['float'] == data['float']
        assert out['str'] == data['str']
        assert torch.equal(out['tensor'], data['tensor'])
        assert isinstance(out['data'], Data) and len(out['data']) == 1
        assert torch.equal(out['data'].x, data['data'].x)

    db.close()


@pytest.mark.parametrize('Database', AVAILABLE_DATABASES)
def test_index(tmp_path, Database):
    kwargs = dict(name='test_table') if Database == SQLiteDatabase else {}

    path = osp.join(tmp_path, 'tuple_storage.db')
    schema = dict(dtype=torch.long, is_index=True)
    db = Database(path, schema=schema, **kwargs)
    assert db.schema == {
        0: TensorInfo(dtype=torch.long, is_index=True),
    }

    index1 = Index([0, 1, 1, 2], dim_size=3, is_sorted=True)
    index2 = Index([0, 1, 1, 2, 2, 3], dim_size=None, is_sorted=True)
    index3 = Index([], dtype=torch.long)

    db.insert(0, index1)
    db.multi_insert([1, 2], [index2, index3])

    out1 = db.get(0)
    out2, out3 = db.multi_get([1, 2])

    for out, index in zip([out1, out2, out3], [index1, index2, index3]):
        assert index.equal(out)
        assert index.dtype == out.dtype
        assert index.dim_size == out.dim_size
        assert index.is_sorted == out.is_sorted

    db.close()


@pytest.mark.parametrize('Database', AVAILABLE_DATABASES)
def test_edge_index(tmp_path, Database):
    kwargs = dict(name='test_table') if Database == SQLiteDatabase else {}

    path = osp.join(tmp_path, 'tuple_storage.db')
    schema = dict(dtype=torch.long, is_edge_index=True)
    db = Database(path, schema=schema, **kwargs)
    assert db.schema == {
        0: TensorInfo(dtype=torch.long, size=(2, -1), is_edge_index=True),
    }

    adj1 = EdgeIndex(
        [[0, 1, 1, 2], [1, 0, 2, 1]],
        sparse_size=(3, 3),
        sort_order='row',
        is_undirected=True,
    )
    adj2 = EdgeIndex(
        [[1, 0, 2, 1, 3, 2], [0, 1, 1, 2, 2, 3]],
        sparse_size=(4, 4),
        sort_order='col',
    )
    adj3 = EdgeIndex([[], []], dtype=torch.long)

    db.insert(0, adj1)
    db.multi_insert([1, 2], [adj2, adj3])

    out1 = db.get(0)
    out2, out3 = db.multi_get([1, 2])

    for out, adj in zip([out1, out2, out3], [adj1, adj2, adj3]):
        assert adj.equal(out)
        assert adj.dtype == out.dtype
        assert adj.sparse_size() == out.sparse_size()
        assert adj.sort_order == out.sort_order
        assert adj.is_undirected == out.is_undirected

    db.close()


@withPackage('sqlite3')
def test_database_syntactic_sugar(tmp_path):
    path = osp.join(tmp_path, 'storage.db')
    db = SQLiteDatabase(path, name='test_table')

    data = torch.randn(5, 16)
    db[0] = data[0]
    db[1:3] = data[1:3]
    db[torch.tensor([3, 4])] = data[torch.tensor([3, 4])]
    assert len(db) == 5

    assert torch.equal(db[0], data[0])
    assert torch.equal(torch.stack(db[:3], dim=0), data[:3])
    assert torch.equal(torch.stack(db[3:], dim=0), data[3:])
    assert torch.equal(torch.stack(db[1::2], dim=0), data[1::2])
    assert torch.equal(torch.stack(db[[4, 3]], dim=0), data[[4, 3]])
    assert torch.equal(
        torch.stack(db[torch.tensor([4, 3])], dim=0),
        data[torch.tensor([4, 3])],
    )
    assert torch.equal(
        torch.stack(db[torch.tensor([4, 4])], dim=0),
        data[torch.tensor([4, 4])],
    )


if __name__ == '__main__':
    import argparse
    import tempfile
    import time

    parser = argparse.ArgumentParser()
    parser.add_argument('--numel', type=int, default=100_000)
    parser.add_argument('--batch_size', type=int, default=256)
    args = parser.parse_args()

    data = torch.randn(args.numel, 128)
    tmp_dir = tempfile.TemporaryDirectory()

    path = osp.join(tmp_dir.name, 'sqlite.db')
    sqlite_db = SQLiteDatabase(path, name='test_table')
    t = time.perf_counter()
    sqlite_db.multi_insert(range(args.numel), data, batch_size=100, log=True)
    print(f'Initialized SQLiteDB in {time.perf_counter() - t:.2f} seconds')

    path = osp.join(tmp_dir.name, 'rocks.db')
    rocks_db = RocksDatabase(path)
    t = time.perf_counter()
    rocks_db.multi_insert(range(args.numel), data, batch_size=100, log=True)
    print(f'Initialized RocksDB in {time.perf_counter() - t:.2f} seconds')

    def in_memory_get(data):
        index = torch.randint(0, args.numel, (args.batch_size, ))
        return data[index]

    def db_get(db):
        index = torch.randint(0, args.numel, (args.batch_size, ))
        return db[index]

    benchmark(
        funcs=[in_memory_get, db_get, db_get],
        func_names=['In-Memory', 'SQLite', 'RocksDB'],
        args=[(data, ), (sqlite_db, ), (rocks_db, )],
        num_steps=50,
        num_warmups=5,
    )

    tmp_dir.cleanup()