1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|
import pytest
import torch
from torch_geometric.data import Data
from torch_geometric.data.datapipes import DatasetAdapter
from torch_geometric.loader import DataLoader
from torch_geometric.testing import withPackage
from torch_geometric.utils import to_smiles
@pytest.fixture()
def dataset_adapter() -> DatasetAdapter:
x = torch.randn(3, 8)
edge_index = torch.tensor([[0, 1, 1], [1, 0, 2]])
data = Data(x=x, edge_index=edge_index)
return DatasetAdapter([data, data, data, data])
def test_dataset_adapter(dataset_adapter):
loader = DataLoader(dataset_adapter, batch_size=2)
batch = next(iter(loader))
assert batch.x.shape == (6, 8)
assert len(loader) == 2
# Test sharding:
dataset_adapter.apply_sharding(2, 0)
assert len([data for data in dataset_adapter]) == 2
assert dataset_adapter.is_shardable()
def test_datapipe_batch_graphs(dataset_adapter):
dp = dataset_adapter.batch_graphs(batch_size=2)
assert len(dp) == 2
batch = next(iter(dp))
assert batch.x.shape == (6, 8)
def test_functional_transform(dataset_adapter):
assert next(iter(dataset_adapter)).is_directed()
dataset_adapter = dataset_adapter.to_undirected()
assert next(iter(dataset_adapter)).is_undirected()
@withPackage('rdkit')
def test_datapipe_parse_smiles():
smiles = 'F/C=C/F'
dp = DatasetAdapter([smiles])
dp = dp.parse_smiles()
assert to_smiles(next(iter(dp))) == smiles
dp = DatasetAdapter([{'abc': smiles, 'cba': '1.0'}])
dp = dp.parse_smiles(smiles_key='abc', target_key='cba')
assert to_smiles(next(iter(dp))) == smiles
|