File: test_hetero_data.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (765 lines) | stat: -rw-r--r-- 27,370 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
import copy
import warnings

import pytest
import torch

from torch_geometric.data import HeteroData
from torch_geometric.data.storage import EdgeStorage
from torch_geometric.testing import (
    get_random_edge_index,
    get_random_tensor_frame,
    withPackage,
)
from torch_geometric.typing import TensorFrame

x_paper = torch.randn(10, 16)
x_author = torch.randn(5, 32)
x_conference = torch.randn(5, 8)

idx_paper = torch.randint(x_paper.size(0), (100, ), dtype=torch.long)
idx_author = torch.randint(x_author.size(0), (100, ), dtype=torch.long)
idx_conference = torch.randint(x_conference.size(0), (100, ), dtype=torch.long)

edge_index_paper_paper = torch.stack([idx_paper[:50], idx_paper[:50]], dim=0)
edge_index_paper_author = torch.stack([idx_paper[:30], idx_author[:30]], dim=0)
edge_index_author_paper = torch.stack([idx_author[:30], idx_paper[:30]], dim=0)
edge_index_paper_conference = torch.stack(
    [idx_paper[:25], idx_conference[:25]], dim=0)

edge_attr_paper_paper = torch.randn(edge_index_paper_paper.size(1), 8)
edge_attr_author_paper = torch.randn(edge_index_author_paper.size(1), 8)


def test_init_hetero_data():
    data = HeteroData()
    data['v1'].x = 1
    data['paper'].x = x_paper
    data['author'].x = x_author
    data['paper', 'paper'].edge_index = edge_index_paper_paper
    data['paper', 'author'].edge_index = edge_index_paper_author
    data['author', 'paper'].edge_index = edge_index_author_paper
    with pytest.warns(UserWarning, match="{'v1'} are isolated"):
        data.validate(raise_on_error=True)

    assert len(data) == 2
    assert data.node_types == ['v1', 'paper', 'author']
    assert len(data.node_stores) == 3
    assert len(data.node_items()) == 3
    assert len(data.edge_types) == 3
    assert len(data.edge_stores) == 3
    assert len(data.edge_items()) == 3

    data = HeteroData(
        v1={'x': 1},
        paper={'x': x_paper},
        author={'x': x_author},
        paper__paper={'edge_index': edge_index_paper_paper},
        paper__author={'edge_index': edge_index_paper_author},
        author__paper={'edge_index': edge_index_author_paper},
    )

    assert len(data) == 2
    assert data.node_types == ['v1', 'paper', 'author']
    assert len(data.node_stores) == 3
    assert len(data.node_items()) == 3
    assert len(data.edge_types) == 3
    assert len(data.edge_stores) == 3
    assert len(data.edge_items()) == 3

    data = HeteroData({
        'v1': {
            'x': 1
        },
        'paper': {
            'x': x_paper
        },
        'author': {
            'x': x_author
        },
        ('paper', 'paper'): {
            'edge_index': edge_index_paper_paper
        },
        ('paper', 'author'): {
            'edge_index': edge_index_paper_author
        },
        ('author', 'paper'): {
            'edge_index': edge_index_author_paper
        },
    })

    assert len(data) == 2
    assert data.node_types == ['v1', 'paper', 'author']
    assert len(data.node_stores) == 3
    assert len(data.node_items()) == 3
    assert len(data.edge_types) == 3
    assert len(data.edge_stores) == 3
    assert len(data.edge_items()) == 3


def test_hetero_data_to_from_dict():
    data = HeteroData()
    data.global_id = '1'
    data['v1'].x = torch.randn(5, 16)
    data['v2'].y = torch.randn(4, 16)
    data['v1', 'v2'].edge_index = torch.tensor([[0, 1, 2, 3], [0, 1, 2, 3]])

    out = HeteroData.from_dict(data.to_dict())
    assert out.global_id == data.global_id
    assert torch.equal(out['v1'].x, data['v1'].x)
    assert torch.equal(out['v2'].y, data['v2'].y)
    assert torch.equal(out['v1', 'v2'].edge_index, data['v1', 'v2'].edge_index)


def test_hetero_data_functions():
    data = HeteroData()
    with pytest.raises(KeyError, match="did not find any occurrences of it"):
        data.collect('x')
    data['paper'].x = x_paper
    data['author'].x = x_author
    data['paper', 'paper'].edge_index = edge_index_paper_paper
    data['paper', 'author'].edge_index = edge_index_paper_author
    data['author', 'paper'].edge_index = edge_index_author_paper
    data['paper', 'paper'].edge_attr = edge_attr_paper_paper
    assert len(data) == 3
    assert sorted(data.keys()) == ['edge_attr', 'edge_index', 'x']
    assert 'x' in data and 'edge_index' in data and 'edge_attr' in data
    assert data.num_nodes == 15
    assert data.num_edges == 110

    assert data.node_attrs() == ['x']
    assert sorted(data.edge_attrs()) == ['edge_attr', 'edge_index']

    assert data.num_node_features == {'paper': 16, 'author': 32}
    assert data.num_edge_features == {
        ('paper', 'to', 'paper'): 8,
        ('paper', 'to', 'author'): 0,
        ('author', 'to', 'paper'): 0,
    }

    node_types, edge_types = data.metadata()
    assert node_types == ['paper', 'author']
    assert edge_types == [
        ('paper', 'to', 'paper'),
        ('paper', 'to', 'author'),
        ('author', 'to', 'paper'),
    ]

    x_dict = data.collect('x')
    assert len(x_dict) == 2
    assert x_dict['paper'].tolist() == x_paper.tolist()
    assert x_dict['author'].tolist() == x_author.tolist()
    assert x_dict == data.x_dict

    data.y = 0
    assert data['y'] == 0 and data.y == 0
    assert len(data) == 4
    assert sorted(data.keys()) == ['edge_attr', 'edge_index', 'x', 'y']

    del data['paper', 'author']
    node_types, edge_types = data.metadata()
    assert node_types == ['paper', 'author']
    assert edge_types == [('paper', 'to', 'paper'), ('author', 'to', 'paper')]

    assert len(data.to_dict()) == 5
    assert len(data.to_namedtuple()) == 5
    assert data.to_namedtuple().y == 0
    assert len(data.to_namedtuple().paper) == 1


def test_hetero_data_set_value_dict():
    data = HeteroData()
    data.set_value_dict('x', {
        'paper': torch.randn(4, 16),
        'author': torch.randn(8, 32),
    })
    assert data.node_types == ['paper', 'author']
    assert data.edge_types == []
    assert data['paper'].x.size() == (4, 16)
    assert data['author'].x.size() == (8, 32)


def test_hetero_data_rename():
    data = HeteroData()
    data['paper'].x = x_paper
    data['author'].x = x_author
    data['paper', 'paper'].edge_index = edge_index_paper_paper
    data['paper', 'author'].edge_index = edge_index_paper_author
    data['author', 'paper'].edge_index = edge_index_author_paper

    data = data.rename('paper', 'article')
    assert data.node_types == ['author', 'article']
    assert data.edge_types == [
        ('article', 'to', 'article'),
        ('article', 'to', 'author'),
        ('author', 'to', 'article'),
    ]

    assert data['article'].x.tolist() == x_paper.tolist()
    edge_index = data['article', 'article'].edge_index
    assert edge_index.tolist() == edge_index_paper_paper.tolist()


def test_dangling_types():
    data = HeteroData()
    data['src', 'to', 'dst'].edge_index = torch.randint(0, 10, (2, 20))
    with pytest.raises(ValueError, match="do not exist as node types"):
        data.validate()

    data = HeteroData()
    data['node'].num_nodes = 10
    with pytest.warns(UserWarning, match="{'node'} are isolated"):
        data.validate()


def test_hetero_data_subgraph():
    data = HeteroData()
    data.num_node_types = 3
    data['paper'].x = x_paper
    data['paper'].name = 'paper'
    data['paper'].num_nodes = x_paper.size(0)
    data['author'].x = x_author
    data['author'].num_nodes = x_author.size(0)
    data['conf'].x = x_conference
    data['conf'].num_nodes = x_conference.size(0)
    data['paper', 'paper'].edge_index = edge_index_paper_paper
    data['paper', 'paper'].edge_attr = edge_attr_paper_paper
    data['paper', 'paper'].name = 'cites'
    data['author', 'paper'].edge_index = edge_index_author_paper
    data['paper', 'author'].edge_index = edge_index_paper_author
    data['paper', 'conf'].edge_index = edge_index_paper_conference

    subset = {
        'paper': torch.randperm(x_paper.size(0))[:4],
        'author': torch.randperm(x_author.size(0))[:2],
        'conf': torch.randperm(x_conference.size(0))[:2],
    }

    out = data.subgraph(subset)
    out.validate(raise_on_error=True)

    assert out.num_node_types == data.num_node_types
    assert out.node_types == ['paper', 'author', 'conf']

    for key in out.node_types:
        assert len(out[key]) == len(data[key])
        assert torch.allclose(out[key].x, data[key].x[subset[key]])
        assert out[key].num_nodes == subset[key].size(0)
        if key == 'paper':
            assert out['paper'].name == 'paper'

    # Construct correct edge index manually:
    node_mask = {}  # for each node type a mask of nodes in the subgraph
    node_map = {}  # for each node type a map from old node id to new node id
    for key in out.node_types:
        node_mask[key] = torch.zeros((data[key].num_nodes, ), dtype=torch.bool)
        node_map[key] = torch.zeros((data[key].num_nodes, ), dtype=torch.long)
        node_mask[key][subset[key]] = True
        node_map[key][subset[key]] = torch.arange(subset[key].size(0))

    edge_mask = {}  # for each edge type a mask of edges in the subgraph
    subgraph_edge_index = {
    }  # for each edge type the edge index of the subgraph
    for key in out.edge_types:
        edge_mask[key] = (node_mask[key[0]][data[key].edge_index[0]]
                          & node_mask[key[-1]][data[key].edge_index[1]])
        subgraph_edge_index[key] = data[key].edge_index[:, edge_mask[key]]
        subgraph_edge_index[key][0] = node_map[key[0]][subgraph_edge_index[key]
                                                       [0]]
        subgraph_edge_index[key][1] = node_map[key[-1]][
            subgraph_edge_index[key][1]]

    assert out.edge_types == [
        ('paper', 'to', 'paper'),
        ('author', 'to', 'paper'),
        ('paper', 'to', 'author'),
        ('paper', 'to', 'conf'),
    ]

    for key in out.edge_types:
        assert len(out[key]) == len(data[key])
        assert torch.equal(out[key].edge_index, subgraph_edge_index[key])
        if key == ('paper', 'to', 'paper'):
            assert torch.allclose(out[key].edge_attr,
                                  data[key].edge_attr[edge_mask[key]])
            assert out[key].name == 'cites'

    # Test for bool and long in `subset_dict`.
    author_mask = torch.zeros((x_author.size(0), ), dtype=torch.bool)
    author_mask[subset['author']] = True
    subset_mixed = {
        'paper': subset['paper'],
        'author': author_mask,
    }
    out = data.subgraph(subset_mixed)
    out.validate(raise_on_error=True)

    assert out.num_node_types == data.num_node_types
    assert out.node_types == ['paper', 'author', 'conf']
    assert out['paper'].num_nodes == subset['paper'].size(0)
    assert out['author'].num_nodes == subset['author'].size(0)
    assert out['conf'].num_nodes == data['conf'].num_nodes
    assert out.edge_types == [
        ('paper', 'to', 'paper'),
        ('author', 'to', 'paper'),
        ('paper', 'to', 'author'),
        ('paper', 'to', 'conf'),
    ]

    out = data.node_type_subgraph(['paper', 'author'])
    assert out.node_types == ['paper', 'author']
    assert out.edge_types == [('paper', 'to', 'paper'),
                              ('author', 'to', 'paper'),
                              ('paper', 'to', 'author')]

    out = data.edge_type_subgraph([('paper', 'author')])
    assert out.node_types == ['paper', 'author']
    assert out.edge_types == [('paper', 'to', 'author')]

    subset = {
        ('paper', 'to', 'paper'): torch.arange(4),
    }

    out = data.edge_subgraph(subset)
    assert out.node_types == data.node_types
    assert out.edge_types == data.edge_types
    assert data['paper'] == out['paper']
    assert data['author'] == out['author']
    assert data['paper', 'author'] == out['paper', 'author']
    assert data['author', 'paper'] == out['author', 'paper']

    assert out['paper', 'paper'].num_edges == 4
    assert out['paper', 'paper'].edge_index.size() == (2, 4)
    assert out['paper', 'paper'].edge_attr.size() == (4, 8)


def test_hetero_data_empty_subgraph():
    data = HeteroData()
    data.num_node_types = 3
    data['paper'].x = torch.arange(5)
    data['author'].x = torch.arange(5)
    data['paper', 'author'].edge_weight = torch.arange(5)

    out = data.subgraph(subset_dict={
        'paper': torch.tensor([1, 2, 3]),
        'author': torch.tensor([1, 2, 3]),
    })

    assert torch.equal(out['paper'].x, torch.arange(1, 4))
    assert out['paper'].num_nodes == 3
    assert torch.equal(out['author'].x, torch.arange(1, 4))
    assert out['author'].num_nodes == 3
    assert 'edge_index' not in out['paper', 'author']
    assert torch.equal(out['paper', 'author'].edge_weight, torch.arange(5))


def test_copy_hetero_data():
    data = HeteroData()
    data['paper'].x = x_paper
    data['paper', 'to', 'paper'].edge_index = edge_index_paper_paper

    out = copy.copy(data)
    assert id(data) != id(out)
    assert len(data.stores) == len(out.stores)
    for store1, store2 in zip(data.stores, out.stores):
        assert id(store1) != id(store2)
        assert id(data) == id(store1._parent())
        assert id(out) == id(store2._parent())
    assert out['paper']._key == 'paper'
    assert data['paper'].x.data_ptr() == out['paper'].x.data_ptr()
    assert out['to']._key == ('paper', 'to', 'paper')
    assert data['to'].edge_index.data_ptr() == out['to'].edge_index.data_ptr()

    out = copy.deepcopy(data)
    assert id(data) != id(out)
    assert len(data.stores) == len(out.stores)
    for store1, store2 in zip(data.stores, out.stores):
        assert id(store1) != id(store2)
    assert id(out) == id(out['paper']._parent())
    assert out['paper']._key == 'paper'
    assert data['paper'].x.data_ptr() != out['paper'].x.data_ptr()
    assert data['paper'].x.tolist() == out['paper'].x.tolist()
    assert id(out) == id(out['to']._parent())
    assert out['to']._key == ('paper', 'to', 'paper')
    assert data['to'].edge_index.data_ptr() != out['to'].edge_index.data_ptr()
    assert data['to'].edge_index.tolist() == out['to'].edge_index.tolist()


def test_to_homogeneous_and_vice_versa():
    data = HeteroData()

    data['paper'].x = torch.randn(100, 128)
    data['paper'].y = torch.randint(0, 10, (100, ))
    data['author'].x = torch.randn(200, 128)

    data['paper', 'paper'].edge_index = get_random_edge_index(100, 100, 250)
    data['paper', 'paper'].edge_weight = torch.randn(250, )
    data['paper', 'paper'].edge_attr = torch.randn(250, 64)

    data['paper', 'author'].edge_index = get_random_edge_index(100, 200, 500)
    data['paper', 'author'].edge_weight = torch.randn(500, )
    data['paper', 'author'].edge_attr = torch.randn(500, 64)

    data['author', 'paper'].edge_index = get_random_edge_index(200, 100, 1000)
    data['author', 'paper'].edge_weight = torch.randn(1000, )
    data['author', 'paper'].edge_attr = torch.randn(1000, 64)

    out = data.to_homogeneous()
    assert len(out) == 7
    assert out.num_nodes == 300
    assert out.num_edges == 1750
    assert out.num_node_features == 128
    assert out.num_edge_features == 64
    assert out.node_type.size() == (300, )
    assert out.node_type.min() == 0
    assert out.node_type.max() == 1
    assert out.edge_type.size() == (1750, )
    assert out.edge_type.min() == 0
    assert out.edge_type.max() == 2
    assert len(out._node_type_names) == 2
    assert len(out._edge_type_names) == 3
    assert out.y.size() == (300, )
    assert torch.allclose(out.y[:100], data['paper'].y)
    assert torch.all(out.y[100:] == -1)
    assert 'y' not in data['author']

    out = out.to_heterogeneous()
    assert len(out) == 5
    assert torch.allclose(data['paper'].x, out['paper'].x)
    assert torch.allclose(data['author'].x, out['author'].x)
    assert torch.allclose(data['paper'].y, out['paper'].y)

    edge_index1 = data['paper', 'paper'].edge_index
    edge_index2 = out['paper', 'paper'].edge_index
    assert edge_index1.tolist() == edge_index2.tolist()
    assert torch.allclose(
        data['paper', 'paper'].edge_weight,
        out['paper', 'paper'].edge_weight,
    )
    assert torch.allclose(
        data['paper', 'paper'].edge_attr,
        out['paper', 'paper'].edge_attr,
    )

    edge_index1 = data['paper', 'author'].edge_index
    edge_index2 = out['paper', 'author'].edge_index
    assert edge_index1.tolist() == edge_index2.tolist()
    assert torch.allclose(
        data['paper', 'author'].edge_weight,
        out['paper', 'author'].edge_weight,
    )
    assert torch.allclose(
        data['paper', 'author'].edge_attr,
        out['paper', 'author'].edge_attr,
    )

    edge_index1 = data['author', 'paper'].edge_index
    edge_index2 = out['author', 'paper'].edge_index
    assert edge_index1.tolist() == edge_index2.tolist()
    assert torch.allclose(
        data['author', 'paper'].edge_weight,
        out['author', 'paper'].edge_weight,
    )
    assert torch.allclose(
        data['author', 'paper'].edge_attr,
        out['author', 'paper'].edge_attr,
    )

    out = data.to_homogeneous()
    node_type = out.node_type
    edge_type = out.edge_type
    del out.node_type
    del out.edge_type
    del out._edge_type_names
    del out._node_type_names
    out = out.to_heterogeneous(node_type, edge_type)
    assert len(out) == 5
    assert torch.allclose(data['paper'].x, out['0'].x)
    assert torch.allclose(data['author'].x, out['1'].x)

    edge_index1 = data['paper', 'paper'].edge_index
    edge_index2 = out['0', '0'].edge_index
    assert edge_index1.tolist() == edge_index2.tolist()
    assert torch.allclose(
        data['paper', 'paper'].edge_weight,
        out['0', '0'].edge_weight,
    )
    assert torch.allclose(
        data['paper', 'paper'].edge_attr,
        out['0', '0'].edge_attr,
    )

    edge_index1 = data['paper', 'author'].edge_index
    edge_index2 = out['0', '1'].edge_index
    assert edge_index1.tolist() == edge_index2.tolist()
    assert torch.allclose(
        data['paper', 'author'].edge_weight,
        out['0', '1'].edge_weight,
    )
    assert torch.allclose(
        data['paper', 'author'].edge_attr,
        out['0', '1'].edge_attr,
    )

    edge_index1 = data['author', 'paper'].edge_index
    edge_index2 = out['1', '0'].edge_index
    assert edge_index1.tolist() == edge_index2.tolist()
    assert torch.allclose(
        data['author', 'paper'].edge_weight,
        out['1', '0'].edge_weight,
    )
    assert torch.allclose(
        data['author', 'paper'].edge_attr,
        out['1', '0'].edge_attr,
    )

    data = HeteroData()

    data['paper'].num_nodes = 100
    data['author'].num_nodes = 200

    out = data.to_homogeneous(add_node_type=False)
    assert len(out) == 1
    assert out.num_nodes == 300

    out = data.to_homogeneous().to_heterogeneous()
    assert len(out) == 1
    assert out['paper'].num_nodes == 100
    assert out['author'].num_nodes == 200


def test_to_homogeneous_padding():
    data = HeteroData()
    data['paper'].x = torch.randn(100, 128)
    data['author'].x = torch.randn(50, 64)

    out = data.to_homogeneous()
    assert len(out) == 2
    assert out.node_type.size() == (150, )
    assert out.node_type[:100].abs().sum() == 0
    assert out.node_type[100:].sub(1).abs().sum() == 0
    assert out.x.size() == (150, 128)
    assert torch.equal(out.x[:100], data['paper'].x)
    assert torch.equal(out.x[100:, :64], data['author'].x)
    assert out.x[100:, 64:].abs().sum() == 0


def test_hetero_data_to_canonical():
    data = HeteroData()
    assert isinstance(data['user', 'product'], EdgeStorage)
    assert len(data.edge_types) == 1
    assert isinstance(data['user', 'to', 'product'], EdgeStorage)
    assert len(data.edge_types) == 1

    data = HeteroData()
    assert isinstance(data['user', 'buys', 'product'], EdgeStorage)
    assert isinstance(data['user', 'clicks', 'product'], EdgeStorage)
    assert len(data.edge_types) == 2

    with pytest.raises(TypeError, match="missing 1 required"):
        data['user', 'product']


def test_hetero_data_invalid_names():
    data = HeteroData()
    with pytest.warns(UserWarning, match="single underscores"):
        data['my test', 'a__b', 'my test'].edge_attr = torch.randn(10, 16)
    with warnings.catch_warnings():  # No warning should be raised afterwards:
        warnings.simplefilter('error')
        data['my test', 'a__c', 'my test'].edge_attr = torch.randn(10, 16)
    assert data.edge_types == [
        ('my test', 'a__b', 'my test'),
        ('my test', 'a__c', 'my test'),
    ]


def test_hetero_data_update():
    data = HeteroData()
    data['paper'].x = torch.arange(0, 5)
    data['paper'].y = torch.arange(5, 10)
    data['author'].x = torch.arange(10, 15)

    other = HeteroData()
    other['paper'].x = torch.arange(15, 20)
    other['author'].y = torch.arange(20, 25)
    other['paper', 'paper'].edge_index = torch.randint(5, (2, 20))

    data.update(other)
    assert len(data) == 3
    assert torch.equal(data['paper'].x, torch.arange(15, 20))
    assert torch.equal(data['paper'].y, torch.arange(5, 10))
    assert torch.equal(data['author'].x, torch.arange(10, 15))
    assert torch.equal(data['author'].y, torch.arange(20, 25))
    assert torch.equal(data['paper', 'paper'].edge_index,
                       other['paper', 'paper'].edge_index)


# Feature Store ###############################################################


def test_basic_feature_store():
    data = HeteroData()
    x = torch.randn(20, 20)

    # Put tensor:
    assert data.put_tensor(copy.deepcopy(x), group_name='paper', attr_name='x',
                           index=None)
    assert torch.equal(data['paper'].x, x)

    # Put (modify) tensor slice:
    x[15:] = 0
    data.put_tensor(0, group_name='paper', attr_name='x',
                    index=slice(15, None, None))

    # Get tensor:
    out = data.get_tensor(group_name='paper', attr_name='x', index=None)
    assert torch.equal(x, out)

    # Get tensor size:
    assert data.get_tensor_size(group_name='paper', attr_name='x') == (20, 20)

    # Get tensor attrs:
    data['paper'].num_nodes = 20  # don't include, not a tensor attr
    data['paper'].bad_attr = torch.randn(10, 20)  # don't include, bad cat_dim

    tensor_attrs = data.get_all_tensor_attrs()
    assert len(tensor_attrs) == 1
    assert tensor_attrs[0].group_name == 'paper'
    assert tensor_attrs[0].attr_name == 'x'

    # Remove tensor:
    assert 'x' in data['paper'].__dict__['_mapping']
    data.remove_tensor(group_name='paper', attr_name='x', index=None)
    assert 'x' not in data['paper'].__dict__['_mapping']


@withPackage('torch_frame')
def test_hetero_data_with_tensor_frame():
    data = HeteroData()
    data['paper'].tf = get_random_tensor_frame(num_rows=x_paper.size(0))
    data['author'].tf = get_random_tensor_frame(num_rows=x_author.size(0))
    data['author', 'paper'].edge_index = edge_index_author_paper

    # Basic functionality:
    assert set(data.node_attrs()) == {'tf'}
    assert data.num_nodes == x_paper.size(0) + x_author.size(0)
    assert data.num_node_features['paper'] == 5
    assert data.num_node_features['author'] == 5

    # Test subgraph:
    subset = {
        'paper': torch.tensor([1, 2, 3, 4]),
        'author': torch.tensor([0, 1, 2, 3]),
    }
    out = data.subgraph(subset)
    assert set(out.node_attrs()) == {'tf'}
    assert out.num_nodes == 8
    for key, value in out['paper'].tf.feat_dict.items():
        assert value.size(0) == 4
        assert torch.allclose(value, data['paper'].tf.feat_dict[key][1:5])
    for key, value in out['author'].tf.feat_dict.items():
        assert value.size(0) == 4
        assert torch.allclose(value, data['author'].tf.feat_dict[key][0:4])

    # Test conversion to homogenous graphs and back:
    for node_attrs in [None, ['tf']]:
        out = data.to_homogeneous(node_attrs=node_attrs)
        assert isinstance(out.tf, TensorFrame)
        assert len(out.tf) == data.num_nodes
        assert out.num_nodes == data.num_nodes
        assert out.num_node_features == 5
        for key, value in out.tf.feat_dict.items():
            assert torch.allclose(
                value,
                torch.cat([
                    data['paper'].tf.feat_dict[key],
                    data['author'].tf.feat_dict[key],
                ], dim=0),
            )

        out = out.to_heterogeneous()
        for node_type in data.node_types:
            for key, value in data[node_type].tf.feat_dict.items():
                assert torch.allclose(value, out[node_type].tf.feat_dict[key])


# Graph Store #################################################################


@withPackage('torch_sparse')
def test_basic_graph_store():
    data = HeteroData()

    def assert_equal_tensor_tuple(expected, actual):
        assert len(expected) == len(actual)
        for i in range(len(expected)):
            assert torch.equal(expected[i], actual[i])

    # We put all three tensor types: COO, CSR, and CSC, and we get them back
    # to confirm that `GraphStore` works as intended.
    coo = (torch.tensor([0, 1]), torch.tensor([1, 2]))
    csr = (torch.tensor([0, 1, 2, 2]), torch.tensor([1, 2]))
    csc = (torch.tensor([0, 1]), torch.tensor([0, 0, 1, 2]))

    # Put:
    data.put_edge_index(coo, layout='coo', edge_type=('a', 'to', 'b'),
                        size=(3, 3))
    data.put_edge_index(csr, layout='csr', edge_type=('a', 'to', 'c'),
                        size=(3, 3))
    data.put_edge_index(csc, layout='csc', edge_type=('b', 'to', 'c'),
                        size=(3, 3))

    # Get:
    assert_equal_tensor_tuple(
        coo, data.get_edge_index(layout='coo', edge_type=('a', 'to', 'b')))
    assert_equal_tensor_tuple(
        csr, data.get_edge_index(layout='csr', edge_type=('a', 'to', 'c')))
    assert_equal_tensor_tuple(
        csc, data.get_edge_index(layout='csc', edge_type=('b', 'to', 'c')))

    # Get attrs:
    edge_attrs = data.get_all_edge_attrs()
    assert len(edge_attrs) == 3

    # Remove:
    coo, csr, csc = edge_attrs
    data.remove_edge_index(coo)
    data.remove_edge_index(csr)
    data.remove_edge_index(csc)
    assert len(data.get_all_edge_attrs()) == 0


def test_generate_ids():
    data = HeteroData()

    data['paper'].x = torch.randn(100, 128)
    data['author'].x = torch.randn(200, 128)

    data['paper', 'author'].edge_index = get_random_edge_index(100, 200, 300)
    data['author', 'paper'].edge_index = get_random_edge_index(200, 100, 400)
    assert len(data) == 2

    data.generate_ids()
    assert len(data) == 4
    assert data['paper'].n_id.tolist() == list(range(100))
    assert data['author'].n_id.tolist() == list(range(200))
    assert data['paper', 'author'].e_id.tolist() == list(range(300))
    assert data['author', 'paper'].e_id.tolist() == list(range(400))


def test_invalid_keys():
    data = HeteroData()

    data['paper'].x = torch.randn(10, 128)
    data['paper'].node_attrs = ['y']
    data['paper', 'paper'].edge_index = get_random_edge_index(10, 10, 20)
    data['paper', 'paper'].edge_attrs = ['edge_attr']

    assert data['paper'].node_attrs() == ['x']
    assert data['paper']['node_attrs'] == ['y']
    assert data['paper', 'paper'].edge_attrs() == ['edge_index']
    assert data['paper', 'paper']['edge_attrs'] == ['edge_attr']

    out = data.to_homogeneous()
    assert set(out.node_attrs()) == {'x', 'node_type'}
    assert set(out.edge_attrs()) == {'edge_index', 'edge_type'}