1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
|
import copy
import warnings
import pytest
import torch
from torch_geometric.data import HeteroData
from torch_geometric.data.storage import EdgeStorage
from torch_geometric.testing import (
get_random_edge_index,
get_random_tensor_frame,
withPackage,
)
from torch_geometric.typing import TensorFrame
x_paper = torch.randn(10, 16)
x_author = torch.randn(5, 32)
x_conference = torch.randn(5, 8)
idx_paper = torch.randint(x_paper.size(0), (100, ), dtype=torch.long)
idx_author = torch.randint(x_author.size(0), (100, ), dtype=torch.long)
idx_conference = torch.randint(x_conference.size(0), (100, ), dtype=torch.long)
edge_index_paper_paper = torch.stack([idx_paper[:50], idx_paper[:50]], dim=0)
edge_index_paper_author = torch.stack([idx_paper[:30], idx_author[:30]], dim=0)
edge_index_author_paper = torch.stack([idx_author[:30], idx_paper[:30]], dim=0)
edge_index_paper_conference = torch.stack(
[idx_paper[:25], idx_conference[:25]], dim=0)
edge_attr_paper_paper = torch.randn(edge_index_paper_paper.size(1), 8)
edge_attr_author_paper = torch.randn(edge_index_author_paper.size(1), 8)
def test_init_hetero_data():
data = HeteroData()
data['v1'].x = 1
data['paper'].x = x_paper
data['author'].x = x_author
data['paper', 'paper'].edge_index = edge_index_paper_paper
data['paper', 'author'].edge_index = edge_index_paper_author
data['author', 'paper'].edge_index = edge_index_author_paper
with pytest.warns(UserWarning, match="{'v1'} are isolated"):
data.validate(raise_on_error=True)
assert len(data) == 2
assert data.node_types == ['v1', 'paper', 'author']
assert len(data.node_stores) == 3
assert len(data.node_items()) == 3
assert len(data.edge_types) == 3
assert len(data.edge_stores) == 3
assert len(data.edge_items()) == 3
data = HeteroData(
v1={'x': 1},
paper={'x': x_paper},
author={'x': x_author},
paper__paper={'edge_index': edge_index_paper_paper},
paper__author={'edge_index': edge_index_paper_author},
author__paper={'edge_index': edge_index_author_paper},
)
assert len(data) == 2
assert data.node_types == ['v1', 'paper', 'author']
assert len(data.node_stores) == 3
assert len(data.node_items()) == 3
assert len(data.edge_types) == 3
assert len(data.edge_stores) == 3
assert len(data.edge_items()) == 3
data = HeteroData({
'v1': {
'x': 1
},
'paper': {
'x': x_paper
},
'author': {
'x': x_author
},
('paper', 'paper'): {
'edge_index': edge_index_paper_paper
},
('paper', 'author'): {
'edge_index': edge_index_paper_author
},
('author', 'paper'): {
'edge_index': edge_index_author_paper
},
})
assert len(data) == 2
assert data.node_types == ['v1', 'paper', 'author']
assert len(data.node_stores) == 3
assert len(data.node_items()) == 3
assert len(data.edge_types) == 3
assert len(data.edge_stores) == 3
assert len(data.edge_items()) == 3
def test_hetero_data_to_from_dict():
data = HeteroData()
data.global_id = '1'
data['v1'].x = torch.randn(5, 16)
data['v2'].y = torch.randn(4, 16)
data['v1', 'v2'].edge_index = torch.tensor([[0, 1, 2, 3], [0, 1, 2, 3]])
out = HeteroData.from_dict(data.to_dict())
assert out.global_id == data.global_id
assert torch.equal(out['v1'].x, data['v1'].x)
assert torch.equal(out['v2'].y, data['v2'].y)
assert torch.equal(out['v1', 'v2'].edge_index, data['v1', 'v2'].edge_index)
def test_hetero_data_functions():
data = HeteroData()
with pytest.raises(KeyError, match="did not find any occurrences of it"):
data.collect('x')
data['paper'].x = x_paper
data['author'].x = x_author
data['paper', 'paper'].edge_index = edge_index_paper_paper
data['paper', 'author'].edge_index = edge_index_paper_author
data['author', 'paper'].edge_index = edge_index_author_paper
data['paper', 'paper'].edge_attr = edge_attr_paper_paper
assert len(data) == 3
assert sorted(data.keys()) == ['edge_attr', 'edge_index', 'x']
assert 'x' in data and 'edge_index' in data and 'edge_attr' in data
assert data.num_nodes == 15
assert data.num_edges == 110
assert data.node_attrs() == ['x']
assert sorted(data.edge_attrs()) == ['edge_attr', 'edge_index']
assert data.num_node_features == {'paper': 16, 'author': 32}
assert data.num_edge_features == {
('paper', 'to', 'paper'): 8,
('paper', 'to', 'author'): 0,
('author', 'to', 'paper'): 0,
}
node_types, edge_types = data.metadata()
assert node_types == ['paper', 'author']
assert edge_types == [
('paper', 'to', 'paper'),
('paper', 'to', 'author'),
('author', 'to', 'paper'),
]
x_dict = data.collect('x')
assert len(x_dict) == 2
assert x_dict['paper'].tolist() == x_paper.tolist()
assert x_dict['author'].tolist() == x_author.tolist()
assert x_dict == data.x_dict
data.y = 0
assert data['y'] == 0 and data.y == 0
assert len(data) == 4
assert sorted(data.keys()) == ['edge_attr', 'edge_index', 'x', 'y']
del data['paper', 'author']
node_types, edge_types = data.metadata()
assert node_types == ['paper', 'author']
assert edge_types == [('paper', 'to', 'paper'), ('author', 'to', 'paper')]
assert len(data.to_dict()) == 5
assert len(data.to_namedtuple()) == 5
assert data.to_namedtuple().y == 0
assert len(data.to_namedtuple().paper) == 1
def test_hetero_data_set_value_dict():
data = HeteroData()
data.set_value_dict('x', {
'paper': torch.randn(4, 16),
'author': torch.randn(8, 32),
})
assert data.node_types == ['paper', 'author']
assert data.edge_types == []
assert data['paper'].x.size() == (4, 16)
assert data['author'].x.size() == (8, 32)
def test_hetero_data_rename():
data = HeteroData()
data['paper'].x = x_paper
data['author'].x = x_author
data['paper', 'paper'].edge_index = edge_index_paper_paper
data['paper', 'author'].edge_index = edge_index_paper_author
data['author', 'paper'].edge_index = edge_index_author_paper
data = data.rename('paper', 'article')
assert data.node_types == ['author', 'article']
assert data.edge_types == [
('article', 'to', 'article'),
('article', 'to', 'author'),
('author', 'to', 'article'),
]
assert data['article'].x.tolist() == x_paper.tolist()
edge_index = data['article', 'article'].edge_index
assert edge_index.tolist() == edge_index_paper_paper.tolist()
def test_dangling_types():
data = HeteroData()
data['src', 'to', 'dst'].edge_index = torch.randint(0, 10, (2, 20))
with pytest.raises(ValueError, match="do not exist as node types"):
data.validate()
data = HeteroData()
data['node'].num_nodes = 10
with pytest.warns(UserWarning, match="{'node'} are isolated"):
data.validate()
def test_hetero_data_subgraph():
data = HeteroData()
data.num_node_types = 3
data['paper'].x = x_paper
data['paper'].name = 'paper'
data['paper'].num_nodes = x_paper.size(0)
data['author'].x = x_author
data['author'].num_nodes = x_author.size(0)
data['conf'].x = x_conference
data['conf'].num_nodes = x_conference.size(0)
data['paper', 'paper'].edge_index = edge_index_paper_paper
data['paper', 'paper'].edge_attr = edge_attr_paper_paper
data['paper', 'paper'].name = 'cites'
data['author', 'paper'].edge_index = edge_index_author_paper
data['paper', 'author'].edge_index = edge_index_paper_author
data['paper', 'conf'].edge_index = edge_index_paper_conference
subset = {
'paper': torch.randperm(x_paper.size(0))[:4],
'author': torch.randperm(x_author.size(0))[:2],
'conf': torch.randperm(x_conference.size(0))[:2],
}
out = data.subgraph(subset)
out.validate(raise_on_error=True)
assert out.num_node_types == data.num_node_types
assert out.node_types == ['paper', 'author', 'conf']
for key in out.node_types:
assert len(out[key]) == len(data[key])
assert torch.allclose(out[key].x, data[key].x[subset[key]])
assert out[key].num_nodes == subset[key].size(0)
if key == 'paper':
assert out['paper'].name == 'paper'
# Construct correct edge index manually:
node_mask = {} # for each node type a mask of nodes in the subgraph
node_map = {} # for each node type a map from old node id to new node id
for key in out.node_types:
node_mask[key] = torch.zeros((data[key].num_nodes, ), dtype=torch.bool)
node_map[key] = torch.zeros((data[key].num_nodes, ), dtype=torch.long)
node_mask[key][subset[key]] = True
node_map[key][subset[key]] = torch.arange(subset[key].size(0))
edge_mask = {} # for each edge type a mask of edges in the subgraph
subgraph_edge_index = {
} # for each edge type the edge index of the subgraph
for key in out.edge_types:
edge_mask[key] = (node_mask[key[0]][data[key].edge_index[0]]
& node_mask[key[-1]][data[key].edge_index[1]])
subgraph_edge_index[key] = data[key].edge_index[:, edge_mask[key]]
subgraph_edge_index[key][0] = node_map[key[0]][subgraph_edge_index[key]
[0]]
subgraph_edge_index[key][1] = node_map[key[-1]][
subgraph_edge_index[key][1]]
assert out.edge_types == [
('paper', 'to', 'paper'),
('author', 'to', 'paper'),
('paper', 'to', 'author'),
('paper', 'to', 'conf'),
]
for key in out.edge_types:
assert len(out[key]) == len(data[key])
assert torch.equal(out[key].edge_index, subgraph_edge_index[key])
if key == ('paper', 'to', 'paper'):
assert torch.allclose(out[key].edge_attr,
data[key].edge_attr[edge_mask[key]])
assert out[key].name == 'cites'
# Test for bool and long in `subset_dict`.
author_mask = torch.zeros((x_author.size(0), ), dtype=torch.bool)
author_mask[subset['author']] = True
subset_mixed = {
'paper': subset['paper'],
'author': author_mask,
}
out = data.subgraph(subset_mixed)
out.validate(raise_on_error=True)
assert out.num_node_types == data.num_node_types
assert out.node_types == ['paper', 'author', 'conf']
assert out['paper'].num_nodes == subset['paper'].size(0)
assert out['author'].num_nodes == subset['author'].size(0)
assert out['conf'].num_nodes == data['conf'].num_nodes
assert out.edge_types == [
('paper', 'to', 'paper'),
('author', 'to', 'paper'),
('paper', 'to', 'author'),
('paper', 'to', 'conf'),
]
out = data.node_type_subgraph(['paper', 'author'])
assert out.node_types == ['paper', 'author']
assert out.edge_types == [('paper', 'to', 'paper'),
('author', 'to', 'paper'),
('paper', 'to', 'author')]
out = data.edge_type_subgraph([('paper', 'author')])
assert out.node_types == ['paper', 'author']
assert out.edge_types == [('paper', 'to', 'author')]
subset = {
('paper', 'to', 'paper'): torch.arange(4),
}
out = data.edge_subgraph(subset)
assert out.node_types == data.node_types
assert out.edge_types == data.edge_types
assert data['paper'] == out['paper']
assert data['author'] == out['author']
assert data['paper', 'author'] == out['paper', 'author']
assert data['author', 'paper'] == out['author', 'paper']
assert out['paper', 'paper'].num_edges == 4
assert out['paper', 'paper'].edge_index.size() == (2, 4)
assert out['paper', 'paper'].edge_attr.size() == (4, 8)
def test_hetero_data_empty_subgraph():
data = HeteroData()
data.num_node_types = 3
data['paper'].x = torch.arange(5)
data['author'].x = torch.arange(5)
data['paper', 'author'].edge_weight = torch.arange(5)
out = data.subgraph(subset_dict={
'paper': torch.tensor([1, 2, 3]),
'author': torch.tensor([1, 2, 3]),
})
assert torch.equal(out['paper'].x, torch.arange(1, 4))
assert out['paper'].num_nodes == 3
assert torch.equal(out['author'].x, torch.arange(1, 4))
assert out['author'].num_nodes == 3
assert 'edge_index' not in out['paper', 'author']
assert torch.equal(out['paper', 'author'].edge_weight, torch.arange(5))
def test_copy_hetero_data():
data = HeteroData()
data['paper'].x = x_paper
data['paper', 'to', 'paper'].edge_index = edge_index_paper_paper
out = copy.copy(data)
assert id(data) != id(out)
assert len(data.stores) == len(out.stores)
for store1, store2 in zip(data.stores, out.stores):
assert id(store1) != id(store2)
assert id(data) == id(store1._parent())
assert id(out) == id(store2._parent())
assert out['paper']._key == 'paper'
assert data['paper'].x.data_ptr() == out['paper'].x.data_ptr()
assert out['to']._key == ('paper', 'to', 'paper')
assert data['to'].edge_index.data_ptr() == out['to'].edge_index.data_ptr()
out = copy.deepcopy(data)
assert id(data) != id(out)
assert len(data.stores) == len(out.stores)
for store1, store2 in zip(data.stores, out.stores):
assert id(store1) != id(store2)
assert id(out) == id(out['paper']._parent())
assert out['paper']._key == 'paper'
assert data['paper'].x.data_ptr() != out['paper'].x.data_ptr()
assert data['paper'].x.tolist() == out['paper'].x.tolist()
assert id(out) == id(out['to']._parent())
assert out['to']._key == ('paper', 'to', 'paper')
assert data['to'].edge_index.data_ptr() != out['to'].edge_index.data_ptr()
assert data['to'].edge_index.tolist() == out['to'].edge_index.tolist()
def test_to_homogeneous_and_vice_versa():
data = HeteroData()
data['paper'].x = torch.randn(100, 128)
data['paper'].y = torch.randint(0, 10, (100, ))
data['author'].x = torch.randn(200, 128)
data['paper', 'paper'].edge_index = get_random_edge_index(100, 100, 250)
data['paper', 'paper'].edge_weight = torch.randn(250, )
data['paper', 'paper'].edge_attr = torch.randn(250, 64)
data['paper', 'author'].edge_index = get_random_edge_index(100, 200, 500)
data['paper', 'author'].edge_weight = torch.randn(500, )
data['paper', 'author'].edge_attr = torch.randn(500, 64)
data['author', 'paper'].edge_index = get_random_edge_index(200, 100, 1000)
data['author', 'paper'].edge_weight = torch.randn(1000, )
data['author', 'paper'].edge_attr = torch.randn(1000, 64)
out = data.to_homogeneous()
assert len(out) == 7
assert out.num_nodes == 300
assert out.num_edges == 1750
assert out.num_node_features == 128
assert out.num_edge_features == 64
assert out.node_type.size() == (300, )
assert out.node_type.min() == 0
assert out.node_type.max() == 1
assert out.edge_type.size() == (1750, )
assert out.edge_type.min() == 0
assert out.edge_type.max() == 2
assert len(out._node_type_names) == 2
assert len(out._edge_type_names) == 3
assert out.y.size() == (300, )
assert torch.allclose(out.y[:100], data['paper'].y)
assert torch.all(out.y[100:] == -1)
assert 'y' not in data['author']
out = out.to_heterogeneous()
assert len(out) == 5
assert torch.allclose(data['paper'].x, out['paper'].x)
assert torch.allclose(data['author'].x, out['author'].x)
assert torch.allclose(data['paper'].y, out['paper'].y)
edge_index1 = data['paper', 'paper'].edge_index
edge_index2 = out['paper', 'paper'].edge_index
assert edge_index1.tolist() == edge_index2.tolist()
assert torch.allclose(
data['paper', 'paper'].edge_weight,
out['paper', 'paper'].edge_weight,
)
assert torch.allclose(
data['paper', 'paper'].edge_attr,
out['paper', 'paper'].edge_attr,
)
edge_index1 = data['paper', 'author'].edge_index
edge_index2 = out['paper', 'author'].edge_index
assert edge_index1.tolist() == edge_index2.tolist()
assert torch.allclose(
data['paper', 'author'].edge_weight,
out['paper', 'author'].edge_weight,
)
assert torch.allclose(
data['paper', 'author'].edge_attr,
out['paper', 'author'].edge_attr,
)
edge_index1 = data['author', 'paper'].edge_index
edge_index2 = out['author', 'paper'].edge_index
assert edge_index1.tolist() == edge_index2.tolist()
assert torch.allclose(
data['author', 'paper'].edge_weight,
out['author', 'paper'].edge_weight,
)
assert torch.allclose(
data['author', 'paper'].edge_attr,
out['author', 'paper'].edge_attr,
)
out = data.to_homogeneous()
node_type = out.node_type
edge_type = out.edge_type
del out.node_type
del out.edge_type
del out._edge_type_names
del out._node_type_names
out = out.to_heterogeneous(node_type, edge_type)
assert len(out) == 5
assert torch.allclose(data['paper'].x, out['0'].x)
assert torch.allclose(data['author'].x, out['1'].x)
edge_index1 = data['paper', 'paper'].edge_index
edge_index2 = out['0', '0'].edge_index
assert edge_index1.tolist() == edge_index2.tolist()
assert torch.allclose(
data['paper', 'paper'].edge_weight,
out['0', '0'].edge_weight,
)
assert torch.allclose(
data['paper', 'paper'].edge_attr,
out['0', '0'].edge_attr,
)
edge_index1 = data['paper', 'author'].edge_index
edge_index2 = out['0', '1'].edge_index
assert edge_index1.tolist() == edge_index2.tolist()
assert torch.allclose(
data['paper', 'author'].edge_weight,
out['0', '1'].edge_weight,
)
assert torch.allclose(
data['paper', 'author'].edge_attr,
out['0', '1'].edge_attr,
)
edge_index1 = data['author', 'paper'].edge_index
edge_index2 = out['1', '0'].edge_index
assert edge_index1.tolist() == edge_index2.tolist()
assert torch.allclose(
data['author', 'paper'].edge_weight,
out['1', '0'].edge_weight,
)
assert torch.allclose(
data['author', 'paper'].edge_attr,
out['1', '0'].edge_attr,
)
data = HeteroData()
data['paper'].num_nodes = 100
data['author'].num_nodes = 200
out = data.to_homogeneous(add_node_type=False)
assert len(out) == 1
assert out.num_nodes == 300
out = data.to_homogeneous().to_heterogeneous()
assert len(out) == 1
assert out['paper'].num_nodes == 100
assert out['author'].num_nodes == 200
def test_to_homogeneous_padding():
data = HeteroData()
data['paper'].x = torch.randn(100, 128)
data['author'].x = torch.randn(50, 64)
out = data.to_homogeneous()
assert len(out) == 2
assert out.node_type.size() == (150, )
assert out.node_type[:100].abs().sum() == 0
assert out.node_type[100:].sub(1).abs().sum() == 0
assert out.x.size() == (150, 128)
assert torch.equal(out.x[:100], data['paper'].x)
assert torch.equal(out.x[100:, :64], data['author'].x)
assert out.x[100:, 64:].abs().sum() == 0
def test_hetero_data_to_canonical():
data = HeteroData()
assert isinstance(data['user', 'product'], EdgeStorage)
assert len(data.edge_types) == 1
assert isinstance(data['user', 'to', 'product'], EdgeStorage)
assert len(data.edge_types) == 1
data = HeteroData()
assert isinstance(data['user', 'buys', 'product'], EdgeStorage)
assert isinstance(data['user', 'clicks', 'product'], EdgeStorage)
assert len(data.edge_types) == 2
with pytest.raises(TypeError, match="missing 1 required"):
data['user', 'product']
def test_hetero_data_invalid_names():
data = HeteroData()
with pytest.warns(UserWarning, match="single underscores"):
data['my test', 'a__b', 'my test'].edge_attr = torch.randn(10, 16)
with warnings.catch_warnings(): # No warning should be raised afterwards:
warnings.simplefilter('error')
data['my test', 'a__c', 'my test'].edge_attr = torch.randn(10, 16)
assert data.edge_types == [
('my test', 'a__b', 'my test'),
('my test', 'a__c', 'my test'),
]
def test_hetero_data_update():
data = HeteroData()
data['paper'].x = torch.arange(0, 5)
data['paper'].y = torch.arange(5, 10)
data['author'].x = torch.arange(10, 15)
other = HeteroData()
other['paper'].x = torch.arange(15, 20)
other['author'].y = torch.arange(20, 25)
other['paper', 'paper'].edge_index = torch.randint(5, (2, 20))
data.update(other)
assert len(data) == 3
assert torch.equal(data['paper'].x, torch.arange(15, 20))
assert torch.equal(data['paper'].y, torch.arange(5, 10))
assert torch.equal(data['author'].x, torch.arange(10, 15))
assert torch.equal(data['author'].y, torch.arange(20, 25))
assert torch.equal(data['paper', 'paper'].edge_index,
other['paper', 'paper'].edge_index)
# Feature Store ###############################################################
def test_basic_feature_store():
data = HeteroData()
x = torch.randn(20, 20)
# Put tensor:
assert data.put_tensor(copy.deepcopy(x), group_name='paper', attr_name='x',
index=None)
assert torch.equal(data['paper'].x, x)
# Put (modify) tensor slice:
x[15:] = 0
data.put_tensor(0, group_name='paper', attr_name='x',
index=slice(15, None, None))
# Get tensor:
out = data.get_tensor(group_name='paper', attr_name='x', index=None)
assert torch.equal(x, out)
# Get tensor size:
assert data.get_tensor_size(group_name='paper', attr_name='x') == (20, 20)
# Get tensor attrs:
data['paper'].num_nodes = 20 # don't include, not a tensor attr
data['paper'].bad_attr = torch.randn(10, 20) # don't include, bad cat_dim
tensor_attrs = data.get_all_tensor_attrs()
assert len(tensor_attrs) == 1
assert tensor_attrs[0].group_name == 'paper'
assert tensor_attrs[0].attr_name == 'x'
# Remove tensor:
assert 'x' in data['paper'].__dict__['_mapping']
data.remove_tensor(group_name='paper', attr_name='x', index=None)
assert 'x' not in data['paper'].__dict__['_mapping']
@withPackage('torch_frame')
def test_hetero_data_with_tensor_frame():
data = HeteroData()
data['paper'].tf = get_random_tensor_frame(num_rows=x_paper.size(0))
data['author'].tf = get_random_tensor_frame(num_rows=x_author.size(0))
data['author', 'paper'].edge_index = edge_index_author_paper
# Basic functionality:
assert set(data.node_attrs()) == {'tf'}
assert data.num_nodes == x_paper.size(0) + x_author.size(0)
assert data.num_node_features['paper'] == 5
assert data.num_node_features['author'] == 5
# Test subgraph:
subset = {
'paper': torch.tensor([1, 2, 3, 4]),
'author': torch.tensor([0, 1, 2, 3]),
}
out = data.subgraph(subset)
assert set(out.node_attrs()) == {'tf'}
assert out.num_nodes == 8
for key, value in out['paper'].tf.feat_dict.items():
assert value.size(0) == 4
assert torch.allclose(value, data['paper'].tf.feat_dict[key][1:5])
for key, value in out['author'].tf.feat_dict.items():
assert value.size(0) == 4
assert torch.allclose(value, data['author'].tf.feat_dict[key][0:4])
# Test conversion to homogenous graphs and back:
for node_attrs in [None, ['tf']]:
out = data.to_homogeneous(node_attrs=node_attrs)
assert isinstance(out.tf, TensorFrame)
assert len(out.tf) == data.num_nodes
assert out.num_nodes == data.num_nodes
assert out.num_node_features == 5
for key, value in out.tf.feat_dict.items():
assert torch.allclose(
value,
torch.cat([
data['paper'].tf.feat_dict[key],
data['author'].tf.feat_dict[key],
], dim=0),
)
out = out.to_heterogeneous()
for node_type in data.node_types:
for key, value in data[node_type].tf.feat_dict.items():
assert torch.allclose(value, out[node_type].tf.feat_dict[key])
# Graph Store #################################################################
@withPackage('torch_sparse')
def test_basic_graph_store():
data = HeteroData()
def assert_equal_tensor_tuple(expected, actual):
assert len(expected) == len(actual)
for i in range(len(expected)):
assert torch.equal(expected[i], actual[i])
# We put all three tensor types: COO, CSR, and CSC, and we get them back
# to confirm that `GraphStore` works as intended.
coo = (torch.tensor([0, 1]), torch.tensor([1, 2]))
csr = (torch.tensor([0, 1, 2, 2]), torch.tensor([1, 2]))
csc = (torch.tensor([0, 1]), torch.tensor([0, 0, 1, 2]))
# Put:
data.put_edge_index(coo, layout='coo', edge_type=('a', 'to', 'b'),
size=(3, 3))
data.put_edge_index(csr, layout='csr', edge_type=('a', 'to', 'c'),
size=(3, 3))
data.put_edge_index(csc, layout='csc', edge_type=('b', 'to', 'c'),
size=(3, 3))
# Get:
assert_equal_tensor_tuple(
coo, data.get_edge_index(layout='coo', edge_type=('a', 'to', 'b')))
assert_equal_tensor_tuple(
csr, data.get_edge_index(layout='csr', edge_type=('a', 'to', 'c')))
assert_equal_tensor_tuple(
csc, data.get_edge_index(layout='csc', edge_type=('b', 'to', 'c')))
# Get attrs:
edge_attrs = data.get_all_edge_attrs()
assert len(edge_attrs) == 3
# Remove:
coo, csr, csc = edge_attrs
data.remove_edge_index(coo)
data.remove_edge_index(csr)
data.remove_edge_index(csc)
assert len(data.get_all_edge_attrs()) == 0
def test_generate_ids():
data = HeteroData()
data['paper'].x = torch.randn(100, 128)
data['author'].x = torch.randn(200, 128)
data['paper', 'author'].edge_index = get_random_edge_index(100, 200, 300)
data['author', 'paper'].edge_index = get_random_edge_index(200, 100, 400)
assert len(data) == 2
data.generate_ids()
assert len(data) == 4
assert data['paper'].n_id.tolist() == list(range(100))
assert data['author'].n_id.tolist() == list(range(200))
assert data['paper', 'author'].e_id.tolist() == list(range(300))
assert data['author', 'paper'].e_id.tolist() == list(range(400))
def test_invalid_keys():
data = HeteroData()
data['paper'].x = torch.randn(10, 128)
data['paper'].node_attrs = ['y']
data['paper', 'paper'].edge_index = get_random_edge_index(10, 10, 20)
data['paper', 'paper'].edge_attrs = ['edge_attr']
assert data['paper'].node_attrs() == ['x']
assert data['paper']['node_attrs'] == ['y']
assert data['paper', 'paper'].edge_attrs() == ['edge_index']
assert data['paper', 'paper']['edge_attrs'] == ['edge_attr']
out = data.to_homogeneous()
assert set(out.node_attrs()) == {'x', 'node_type'}
assert set(out.edge_attrs()) == {'edge_index', 'edge_type'}
|