1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
import pytest
import torch
import torch_geometric
from torch_geometric.data.hypergraph_data import HyperGraphData
from torch_geometric.loader import DataLoader
def test_hypergraph_data():
torch_geometric.set_debug(True)
x = torch.tensor([[1, 3, 5, 7], [2, 4, 6, 8], [7, 8, 9, 10]],
dtype=torch.float).t()
edge_index = torch.tensor([[0, 1, 2, 1, 2, 3, 0, 2, 3],
[0, 0, 0, 1, 1, 1, 2, 2, 2]])
data = HyperGraphData(x=x, edge_index=edge_index).to(torch.device('cpu'))
data.validate(raise_on_error=True)
assert data.num_nodes == 4
assert data.num_edges == 3
assert data.node_attrs() == ['x']
assert data.edge_attrs() == ['edge_index']
assert data.x.tolist() == x.tolist()
assert data['x'].tolist() == x.tolist()
assert data.get('x').tolist() == x.tolist()
assert data.get('y', 2) == 2
assert data.get('y', None) is None
assert sorted(data.keys()) == ['edge_index', 'x']
assert len(data) == 2
assert 'x' in data and 'edge_index' in data and 'pos' not in data
D = data.to_dict()
assert len(D) == 2
assert 'x' in D and 'edge_index' in D
D = data.to_namedtuple()
assert len(D) == 2
assert D.x is not None and D.edge_index is not None
assert data.__cat_dim__('x', data.x) == 0
assert data.__cat_dim__('edge_index', data.edge_index) == -1
assert data.__inc__('x', data.x) == 0
assert torch.equal(data.__inc__('edge_index', data.edge_index),
torch.tensor([[data.num_nodes], [data.num_edges]]))
data_list = [data, data]
loader = DataLoader(data_list, batch_size=2)
batch = next(iter(loader))
batched_edge_index = batch.edge_index
assert batched_edge_index.tolist() == [[
0, 1, 2, 1, 2, 3, 0, 2, 3, 4, 5, 6, 5, 6, 7, 4, 6, 7
], [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]]
assert not data.x.is_contiguous()
data.contiguous()
assert data.x.is_contiguous()
assert not data.is_coalesced()
data = data.coalesce()
assert data.is_coalesced()
clone = data.clone()
assert clone != data
assert len(clone) == len(data)
assert clone.x.data_ptr() != data.x.data_ptr()
assert clone.x.tolist() == data.x.tolist()
assert clone.edge_index.data_ptr() != data.edge_index.data_ptr()
assert clone.edge_index.tolist() == data.edge_index.tolist()
data['x'] = x + 1
assert data.x.tolist() == (x + 1).tolist()
assert str(data) == 'HyperGraphData(x=[4, 3], edge_index=[2, 9])'
dictionary = {'x': data.x, 'edge_index': data.edge_index}
data = HyperGraphData.from_dict(dictionary)
assert sorted(data.keys()) == ['edge_index', 'x']
assert not data.has_isolated_nodes()
# assert not data.has_self_loops()
# assert data.is_undirected()
# assert not data.is_directed()
assert data.num_nodes == 4
assert data.num_edges == 3
with pytest.warns(UserWarning, match='deprecated'):
assert data.num_faces is None
assert data.num_node_features == 3
assert data.num_features == 3
data.edge_attr = torch.randn(data.num_edges, 2)
assert data.num_edge_features == 2
assert data.is_edge_attr('edge_attr')
data.edge_attr = None
data.x = None
with pytest.warns(UserWarning, match='Unable to accurately infer'):
assert data.num_nodes == 4
data.edge_index = None
with pytest.warns(UserWarning, match='Unable to accurately infer'):
assert data.num_nodes is None
assert data.num_edges == 0
data.num_nodes = 4
assert data.num_nodes == 4
data = HyperGraphData(x=x, attribute=x)
assert len(data) == 2
assert data.x.tolist() == x.tolist()
assert data.attribute.tolist() == x.tolist()
face = torch.tensor([[0, 1], [1, 2], [2, 3]])
data = HyperGraphData(num_nodes=4, face=face)
with pytest.warns(UserWarning, match='deprecated'):
assert data.num_faces == 2
assert data.num_nodes == 4
data = HyperGraphData(title='test')
assert str(data) == "HyperGraphData(title='test')"
assert data.num_node_features == 0
# assert data.num_edge_features == 0
key = value = 'test_value'
data[key] = value
assert data[key] == value
del data[value]
del data[value] # Deleting unset attributes should work as well.
assert data.get(key) is None
assert data.get('title') == 'test'
torch_geometric.set_debug(False)
def test_hypergraphdata_subgraph():
x = torch.arange(5)
y = torch.tensor([0.])
edge_index = torch.tensor([[0, 1, 3, 2, 4, 0, 3, 4, 2, 1, 2, 3],
[0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3]])
edge_attr = torch.rand(4, 2)
data = HyperGraphData(x=x, y=y, edge_index=edge_index, edge_attr=edge_attr,
num_nodes=5)
out = data.subgraph(torch.tensor([1, 2, 4]))
assert len(out) == 5
assert torch.equal(out.x, torch.tensor([1, 2, 4]))
assert torch.equal(out.y, data.y)
assert out.edge_index.tolist() == [[1, 2, 2, 1, 0, 1], [0, 0, 1, 1, 2, 2]]
assert torch.equal(out.edge_attr, edge_attr[[1, 2, 3]])
assert out.num_nodes == 3
# Test unordered selection:
out = data.subgraph(torch.tensor([3, 1, 2]))
assert len(out) == 5
assert torch.equal(out.x, torch.tensor([3, 1, 2]))
assert torch.equal(out.y, data.y)
assert out.edge_index.tolist() == [[0, 2, 0, 2, 1, 2, 0],
[0, 0, 1, 1, 2, 2, 2]]
assert torch.equal(out.edge_attr, edge_attr[[1, 2, 3]])
assert out.num_nodes == 3
out = data.subgraph(torch.tensor([False, False, False, True, True]))
assert len(out) == 5
assert torch.equal(out.x, torch.arange(3, 5))
assert torch.equal(out.y, data.y)
assert out.edge_index.tolist() == [[0, 1, 0, 1], [0, 0, 1, 1]]
assert torch.equal(out.edge_attr, edge_attr[[1, 2]])
assert out.num_nodes == 2
|