File: test_hypergraph_data.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (171 lines) | stat: -rw-r--r-- 5,918 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import pytest
import torch

import torch_geometric
from torch_geometric.data.hypergraph_data import HyperGraphData
from torch_geometric.loader import DataLoader


def test_hypergraph_data():
    torch_geometric.set_debug(True)

    x = torch.tensor([[1, 3, 5, 7], [2, 4, 6, 8], [7, 8, 9, 10]],
                     dtype=torch.float).t()
    edge_index = torch.tensor([[0, 1, 2, 1, 2, 3, 0, 2, 3],
                               [0, 0, 0, 1, 1, 1, 2, 2, 2]])
    data = HyperGraphData(x=x, edge_index=edge_index).to(torch.device('cpu'))
    data.validate(raise_on_error=True)

    assert data.num_nodes == 4
    assert data.num_edges == 3

    assert data.node_attrs() == ['x']
    assert data.edge_attrs() == ['edge_index']

    assert data.x.tolist() == x.tolist()
    assert data['x'].tolist() == x.tolist()
    assert data.get('x').tolist() == x.tolist()
    assert data.get('y', 2) == 2
    assert data.get('y', None) is None

    assert sorted(data.keys()) == ['edge_index', 'x']
    assert len(data) == 2
    assert 'x' in data and 'edge_index' in data and 'pos' not in data

    D = data.to_dict()
    assert len(D) == 2
    assert 'x' in D and 'edge_index' in D

    D = data.to_namedtuple()
    assert len(D) == 2
    assert D.x is not None and D.edge_index is not None

    assert data.__cat_dim__('x', data.x) == 0
    assert data.__cat_dim__('edge_index', data.edge_index) == -1
    assert data.__inc__('x', data.x) == 0
    assert torch.equal(data.__inc__('edge_index', data.edge_index),
                       torch.tensor([[data.num_nodes], [data.num_edges]]))
    data_list = [data, data]
    loader = DataLoader(data_list, batch_size=2)
    batch = next(iter(loader))
    batched_edge_index = batch.edge_index
    assert batched_edge_index.tolist() == [[
        0, 1, 2, 1, 2, 3, 0, 2, 3, 4, 5, 6, 5, 6, 7, 4, 6, 7
    ], [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]]

    assert not data.x.is_contiguous()
    data.contiguous()
    assert data.x.is_contiguous()

    assert not data.is_coalesced()
    data = data.coalesce()
    assert data.is_coalesced()

    clone = data.clone()
    assert clone != data
    assert len(clone) == len(data)
    assert clone.x.data_ptr() != data.x.data_ptr()
    assert clone.x.tolist() == data.x.tolist()
    assert clone.edge_index.data_ptr() != data.edge_index.data_ptr()
    assert clone.edge_index.tolist() == data.edge_index.tolist()

    data['x'] = x + 1
    assert data.x.tolist() == (x + 1).tolist()

    assert str(data) == 'HyperGraphData(x=[4, 3], edge_index=[2, 9])'

    dictionary = {'x': data.x, 'edge_index': data.edge_index}
    data = HyperGraphData.from_dict(dictionary)
    assert sorted(data.keys()) == ['edge_index', 'x']

    assert not data.has_isolated_nodes()
    # assert not data.has_self_loops()
    # assert data.is_undirected()
    # assert not data.is_directed()

    assert data.num_nodes == 4
    assert data.num_edges == 3
    with pytest.warns(UserWarning, match='deprecated'):
        assert data.num_faces is None
    assert data.num_node_features == 3
    assert data.num_features == 3

    data.edge_attr = torch.randn(data.num_edges, 2)
    assert data.num_edge_features == 2
    assert data.is_edge_attr('edge_attr')
    data.edge_attr = None

    data.x = None
    with pytest.warns(UserWarning, match='Unable to accurately infer'):
        assert data.num_nodes == 4

    data.edge_index = None
    with pytest.warns(UserWarning, match='Unable to accurately infer'):
        assert data.num_nodes is None
    assert data.num_edges == 0

    data.num_nodes = 4
    assert data.num_nodes == 4

    data = HyperGraphData(x=x, attribute=x)
    assert len(data) == 2
    assert data.x.tolist() == x.tolist()
    assert data.attribute.tolist() == x.tolist()

    face = torch.tensor([[0, 1], [1, 2], [2, 3]])
    data = HyperGraphData(num_nodes=4, face=face)
    with pytest.warns(UserWarning, match='deprecated'):
        assert data.num_faces == 2
    assert data.num_nodes == 4

    data = HyperGraphData(title='test')
    assert str(data) == "HyperGraphData(title='test')"
    assert data.num_node_features == 0
    # assert data.num_edge_features == 0

    key = value = 'test_value'
    data[key] = value
    assert data[key] == value
    del data[value]
    del data[value]  # Deleting unset attributes should work as well.

    assert data.get(key) is None
    assert data.get('title') == 'test'

    torch_geometric.set_debug(False)


def test_hypergraphdata_subgraph():
    x = torch.arange(5)
    y = torch.tensor([0.])
    edge_index = torch.tensor([[0, 1, 3, 2, 4, 0, 3, 4, 2, 1, 2, 3],
                               [0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3]])
    edge_attr = torch.rand(4, 2)
    data = HyperGraphData(x=x, y=y, edge_index=edge_index, edge_attr=edge_attr,
                          num_nodes=5)

    out = data.subgraph(torch.tensor([1, 2, 4]))
    assert len(out) == 5
    assert torch.equal(out.x, torch.tensor([1, 2, 4]))
    assert torch.equal(out.y, data.y)
    assert out.edge_index.tolist() == [[1, 2, 2, 1, 0, 1], [0, 0, 1, 1, 2, 2]]
    assert torch.equal(out.edge_attr, edge_attr[[1, 2, 3]])
    assert out.num_nodes == 3

    # Test unordered selection:
    out = data.subgraph(torch.tensor([3, 1, 2]))
    assert len(out) == 5
    assert torch.equal(out.x, torch.tensor([3, 1, 2]))
    assert torch.equal(out.y, data.y)
    assert out.edge_index.tolist() == [[0, 2, 0, 2, 1, 2, 0],
                                       [0, 0, 1, 1, 2, 2, 2]]
    assert torch.equal(out.edge_attr, edge_attr[[1, 2, 3]])
    assert out.num_nodes == 3

    out = data.subgraph(torch.tensor([False, False, False, True, True]))
    assert len(out) == 5
    assert torch.equal(out.x, torch.arange(3, 5))
    assert torch.equal(out.y, data.y)
    assert out.edge_index.tolist() == [[0, 1, 0, 1], [0, 0, 1, 1]]
    assert torch.equal(out.edge_attr, edge_attr[[1, 2]])
    assert out.num_nodes == 2