1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
import socket
import warnings
import pytest
import torch
import torch.multiprocessing as mp
from torch_geometric.data import Data, HeteroData
from torch_geometric.datasets import FakeDataset, FakeHeteroDataset
from torch_geometric.distributed import (
DistContext,
DistNeighborLoader,
DistNeighborSampler,
LocalFeatureStore,
LocalGraphStore,
Partitioner,
)
from torch_geometric.testing import onlyDistributedTest, withMETIS
from torch_geometric.testing.distributed import ProcArgs, assert_run_mproc
def create_dist_data(tmp_path: str, rank: int):
graph_store = LocalGraphStore.from_partition(tmp_path, pid=rank)
feat_store = LocalFeatureStore.from_partition(tmp_path, pid=rank)
return feat_store, graph_store
def dist_neighbor_loader_homo(
world_size: int,
tmp_path: str,
rank: int,
master_addr: str,
master_port: int,
num_workers: int,
async_sampling: bool,
):
part_data = create_dist_data(tmp_path, rank)
input_nodes = part_data[0].get_global_id(None)
current_ctx = DistContext(
rank=rank,
global_rank=rank,
world_size=world_size,
global_world_size=world_size,
group_name='dist-loader-test',
)
loader = DistNeighborLoader(
part_data,
num_neighbors=[1],
batch_size=10,
num_workers=num_workers,
input_nodes=input_nodes,
master_addr=master_addr,
master_port=master_port,
current_ctx=current_ctx,
concurrency=10,
drop_last=True,
async_sampling=async_sampling,
)
edge_index = part_data[1]._edge_index[(None, 'coo')]
assert str(loader).startswith('DistNeighborLoader')
assert str(mp.current_process().pid) in str(loader)
assert isinstance(loader.dist_sampler, DistNeighborSampler)
assert not part_data[0].meta['is_hetero']
for batch in loader:
assert isinstance(batch, Data)
assert batch.n_id.size() == (batch.num_nodes, )
assert batch.input_id.numel() == batch.batch_size == 10
assert batch.edge_index.min() >= 0
assert batch.edge_index.max() < batch.num_nodes
assert torch.equal(
batch.n_id[batch.edge_index],
edge_index[:, batch.e_id],
)
assert loader.channel.empty()
def dist_neighbor_loader_hetero(
world_size: int,
tmp_path: str,
rank: int,
master_addr: str,
master_port: int,
num_workers: int,
async_sampling: bool,
):
part_data = create_dist_data(tmp_path, rank)
input_nodes = ('v0', part_data[0].get_global_id('v0'))
current_ctx = DistContext(
rank=rank,
global_rank=rank,
world_size=world_size,
global_world_size=world_size,
group_name='dist-loader-test',
)
loader = DistNeighborLoader(
part_data,
num_neighbors=[1],
batch_size=10,
num_workers=num_workers,
input_nodes=input_nodes,
master_addr=master_addr,
master_port=master_port,
current_ctx=current_ctx,
concurrency=10,
drop_last=True,
async_sampling=async_sampling,
)
assert str(loader).startswith('DistNeighborLoader')
assert str(mp.current_process().pid) in str(loader)
assert isinstance(loader.dist_sampler, DistNeighborSampler)
assert part_data[0].meta['is_hetero']
for batch in loader:
assert isinstance(batch, HeteroData)
assert batch['v0'].input_id.numel() == batch['v0'].batch_size == 10
assert len(batch.node_types) == 2
for node_type in batch.node_types:
assert torch.equal(batch[node_type].x, batch.x_dict[node_type])
assert batch.x_dict[node_type].size(0) >= 0
assert batch[node_type].n_id.size(0) == batch[node_type].num_nodes
assert len(batch.edge_types) == 4
for edge_type in batch.edge_types:
num_edges = batch[edge_type].edge_index.size(1)
if num_edges > 0: # Test edge mapping:
assert batch[edge_type].edge_attr.size(0) == num_edges
src, _, dst = edge_type
edge_index = part_data[1]._edge_index[(edge_type, "coo")]
global_edge_index1 = torch.stack([
batch[src].n_id[batch[edge_type].edge_index[0]],
batch[dst].n_id[batch[edge_type].edge_index[1]],
], dim=0)
# TODO There is a current known flake, which we need to fix:
e_id = batch[edge_type].e_id
if e_id.numel() > 0 and e_id.max() >= edge_index.size(1):
warnings.warn("Known test flake")
else:
global_edge_index2 = edge_index[:, e_id]
if not torch.equal(global_edge_index1, global_edge_index2):
warnings.warn("Known test flake")
assert loader.channel.empty()
@withMETIS
@onlyDistributedTest
@pytest.mark.parametrize('num_parts', [2])
@pytest.mark.parametrize('num_workers', [0])
@pytest.mark.parametrize('async_sampling', [True])
def test_dist_neighbor_loader_homo(
tmp_path,
num_parts,
num_workers,
async_sampling,
):
mp_context = torch.multiprocessing.get_context('spawn')
addr = '127.0.0.1'
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.settimeout(1)
s.bind(('', 0))
port = s.getsockname()[1]
data = FakeDataset(
num_graphs=1,
avg_num_nodes=100,
avg_degree=3,
edge_dim=2,
)[0]
partitioner = Partitioner(data, num_parts, tmp_path)
partitioner.generate_partition()
procs = [
ProcArgs(
target=dist_neighbor_loader_homo,
args=(tmp_path, part, addr, port, num_workers, async_sampling),
) for part in range(num_parts)
]
assert_run_mproc(mp_context, procs)
@withMETIS
@onlyDistributedTest
@pytest.mark.parametrize('num_parts', [2])
@pytest.mark.parametrize('num_workers', [0])
@pytest.mark.parametrize('async_sampling', [True])
def test_dist_neighbor_loader_hetero(
tmp_path,
num_parts,
num_workers,
async_sampling,
):
mp_context = torch.multiprocessing.get_context('spawn')
addr = '127.0.0.1'
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.settimeout(1)
s.bind(('', 0))
port = s.getsockname()[1]
data = FakeHeteroDataset(
num_graphs=1,
avg_num_nodes=100,
avg_degree=3,
num_node_types=2,
num_edge_types=4,
edge_dim=2,
)[0]
partitioner = Partitioner(data, num_parts, tmp_path)
partitioner.generate_partition()
procs = [
ProcArgs(
target=dist_neighbor_loader_hetero,
args=(tmp_path, part, addr, port, num_workers, async_sampling),
) for part in range(num_parts)
]
assert_run_mproc(mp_context, procs)
|