File: test_local_feature_store.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (140 lines) | stat: -rw-r--r-- 4,237 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch

from torch_geometric.distributed import LocalFeatureStore
from torch_geometric.testing import onlyDistributedTest


@onlyDistributedTest
def test_local_feature_store_global_id():
    store = LocalFeatureStore()

    feat = torch.tensor([
        [0.0, 0.0, 0.0],
        [1.0, 1.0, 1.0],
        [2.0, 2.0, 2.0],
        [3.0, 3.0, 3.0],
        [4.0, 4.0, 4.0],
        [5.0, 5.0, 5.0],
        [6.0, 6.0, 6.0],
        [7.0, 7.0, 7.0],
        [8.0, 8.0, 8.0],
    ])

    paper_global_id = torch.tensor([1, 2, 3, 5, 8, 4])
    paper_feat = feat[paper_global_id]

    store.put_global_id(paper_global_id, group_name='paper')
    store.put_tensor(paper_feat, group_name='paper', attr_name='feat')

    out = store.get_tensor_from_global_id(group_name='paper', attr_name='feat',
                                          index=torch.tensor([3, 8, 4]))
    assert torch.equal(out, feat[torch.tensor([3, 8, 4])])


@onlyDistributedTest
def test_local_feature_store_utils():
    store = LocalFeatureStore()

    feat = torch.tensor([
        [0.0, 0.0, 0.0],
        [1.0, 1.0, 1.0],
        [2.0, 2.0, 2.0],
        [3.0, 3.0, 3.0],
        [4.0, 4.0, 4.0],
        [5.0, 5.0, 5.0],
        [6.0, 6.0, 6.0],
        [7.0, 7.0, 7.0],
        [8.0, 8.0, 8.0],
    ])

    paper_global_id = torch.tensor([1, 2, 3, 5, 8, 4])
    paper_feat = feat[paper_global_id]

    store.put_tensor(paper_feat, group_name='paper', attr_name='feat')

    assert len(store.get_all_tensor_attrs()) == 1
    attr = store.get_all_tensor_attrs()[0]
    assert attr.group_name == 'paper'
    assert attr.attr_name == 'feat'
    assert attr.index is None
    assert store.get_tensor_size(attr) == (6, 3)


@onlyDistributedTest
def test_homogeneous_feature_store():
    node_id = torch.randperm(6)
    x = torch.randn(6, 32)
    y = torch.randint(0, 2, (6, ))
    edge_id = torch.randperm(12)
    edge_attr = torch.randn(12, 16)

    store = LocalFeatureStore.from_data(node_id, x, y, edge_id, edge_attr)

    assert len(store.get_all_tensor_attrs()) == 3
    attrs = store.get_all_tensor_attrs()

    assert attrs[0].group_name is None
    assert attrs[0].attr_name == 'x'
    assert attrs[1].group_name is None
    assert attrs[1].attr_name == 'y'
    assert attrs[2].group_name == (None, None)
    assert attrs[2].attr_name == 'edge_attr'

    assert torch.equal(store.get_global_id(group_name=None), node_id)
    assert torch.equal(store.get_tensor(group_name=None, attr_name='x'), x)
    assert torch.equal(store.get_tensor(group_name=None, attr_name='y'), y)
    assert torch.equal(store.get_global_id(group_name=(None, None)), edge_id)
    assert torch.equal(
        store.get_tensor(group_name=(None, None), attr_name='edge_attr'),
        edge_attr,
    )


@onlyDistributedTest
def test_heterogeneous_feature_store():
    node_type = 'paper'
    edge_type = ('paper', 'to', 'paper')
    node_id_dict = {node_type: torch.randperm(6)}
    x_dict = {node_type: torch.randn(6, 32)}
    y_dict = {node_type: torch.randint(0, 2, (6, ))}
    edge_id_dict = {edge_type: torch.randperm(12)}
    edge_attr_dict = {edge_type: torch.randn(12, 16)}

    store = LocalFeatureStore.from_hetero_data(
        node_id_dict,
        x_dict,
        y_dict,
        edge_id_dict,
        edge_attr_dict,
    )

    assert len(store.get_all_tensor_attrs()) == 3
    attrs = store.get_all_tensor_attrs()

    assert attrs[0].group_name == node_type
    assert attrs[0].attr_name == 'x'
    assert attrs[1].group_name == node_type
    assert attrs[1].attr_name == 'y'
    assert attrs[2].group_name == edge_type
    assert attrs[2].attr_name == 'edge_attr'

    assert torch.equal(
        store.get_global_id(group_name=node_type),
        node_id_dict[node_type],
    )
    assert torch.equal(
        store.get_tensor(group_name=node_type, attr_name='x'),
        x_dict[node_type],
    )
    assert torch.equal(
        store.get_tensor(group_name=node_type, attr_name='y'),
        y_dict[node_type],
    )
    assert torch.equal(
        store.get_global_id(group_name=edge_type),
        edge_id_dict[edge_type],
    )
    assert torch.equal(
        store.get_tensor(group_name=edge_type, attr_name='edge_attr'),
        edge_attr_dict[edge_type],
    )