File: test_local_graph_store.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (140 lines) | stat: -rw-r--r-- 4,016 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch

from torch_geometric.distributed import LocalGraphStore
from torch_geometric.testing import get_random_edge_index, onlyDistributedTest


@onlyDistributedTest
def test_local_graph_store():
    graph_store = LocalGraphStore()

    edge_index = get_random_edge_index(100, 100, 300)
    edge_id = torch.tensor([1, 2, 3, 5, 8, 4])

    graph_store.put_edge_index(
        edge_index,
        edge_type=None,
        layout='coo',
        size=(100, 100),
    )

    graph_store.put_edge_id(
        edge_id,
        edge_type=None,
        layout='coo',
        size=(100, 100),
    )

    assert len(graph_store.get_all_edge_attrs()) == 1
    edge_attr = graph_store.get_all_edge_attrs()[0]
    assert torch.equal(graph_store.get_edge_index(edge_attr), edge_index)
    assert torch.equal(graph_store.get_edge_id(edge_attr), edge_id)
    assert not graph_store.is_sorted
    graph_store.remove_edge_index(edge_attr)
    graph_store.remove_edge_id(edge_attr)
    assert len(graph_store.get_all_edge_attrs()) == 0


@onlyDistributedTest
def test_homogeneous_graph_store():
    edge_id = torch.randperm(300)
    edge_index = get_random_edge_index(100, 100, 300)
    edge_index[1] = torch.sort(edge_index[1])[0]

    graph_store = LocalGraphStore.from_data(
        edge_id,
        edge_index,
        num_nodes=100,
        is_sorted=True,
    )

    assert len(graph_store.get_all_edge_attrs()) == 1
    edge_attr = graph_store.get_all_edge_attrs()[0]
    assert edge_attr.edge_type is None
    assert edge_attr.layout.value == 'coo'
    assert edge_attr.is_sorted
    assert edge_attr.size == (100, 100)

    assert torch.equal(
        graph_store.get_edge_id(edge_type=None, layout='coo'),
        edge_id,
    )
    assert torch.equal(
        graph_store.get_edge_index(edge_type=None, layout='coo'),
        edge_index,
    )


@onlyDistributedTest
def test_heterogeneous_graph_store():
    edge_type = ('paper', 'to', 'paper')
    edge_id_dict = {edge_type: torch.randperm(300)}
    edge_index = get_random_edge_index(100, 100, 300)
    edge_index[1] = torch.sort(edge_index[1])[0]
    edge_index_dict = {edge_type: edge_index}

    graph_store = LocalGraphStore.from_hetero_data(
        edge_id_dict,
        edge_index_dict,
        num_nodes_dict={'paper': 100},
        is_sorted=True,
    )

    assert len(graph_store.get_all_edge_attrs()) == 1
    edge_attr = graph_store.get_all_edge_attrs()[0]
    assert edge_attr.edge_type == edge_type
    assert edge_attr.layout.value == 'coo'
    assert edge_attr.is_sorted
    assert edge_attr.size == (100, 100)

    assert torch.equal(
        graph_store.get_edge_id(edge_type, layout='coo'),
        edge_id_dict[edge_type],
    )
    assert torch.equal(
        graph_store.get_edge_index(edge_type, layout='coo'),
        edge_index_dict[edge_type],
    )


@onlyDistributedTest
def test_sorted_graph_store():
    edge_index_sorted = torch.tensor([[1, 7, 5, 6, 1], [0, 0, 1, 1, 2]])
    edge_id_sorted = torch.tensor([0, 1, 2, 3, 4])

    edge_index = torch.tensor([[1, 5, 7, 1, 6], [0, 1, 0, 2, 1]])
    edge_id = torch.tensor([0, 2, 1, 4, 3])

    graph_store = LocalGraphStore.from_data(
        edge_id,
        edge_index,
        num_nodes=8,
        is_sorted=False,
    )
    assert torch.equal(
        graph_store.get_edge_index(edge_type=None, layout='coo'),
        edge_index_sorted,
    )
    assert torch.equal(
        graph_store.get_edge_id(edge_type=None, layout='coo'),
        edge_id_sorted,
    )

    edge_type = ('paper', 'to', 'paper')
    edge_index_dict = {edge_type: edge_index}
    edge_id_dict = {edge_type: edge_id}

    graph_store = LocalGraphStore.from_hetero_data(
        edge_id_dict,
        edge_index_dict,
        num_nodes_dict={'paper': 8},
        is_sorted=False,
    )
    assert torch.equal(
        graph_store.get_edge_index(edge_type, layout='coo'),
        edge_index_sorted,
    )
    assert torch.equal(
        graph_store.get_edge_id(edge_type, layout='coo'),
        edge_id_sorted,
    )