File: test_captum.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (204 lines) | stat: -rw-r--r-- 8,103 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import pytest
import torch

from torch_geometric.data import Data, HeteroData
from torch_geometric.explain.algorithm.captum import to_captum_input
from torch_geometric.nn import GAT, GCN, SAGEConv
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.models import to_captum_model
from torch_geometric.testing import withPackage

x = torch.randn(8, 3, requires_grad=True)
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7],
                           [1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6]])

GCN = GCN(3, 16, 2, 7, dropout=0.5)
GAT = GAT(3, 16, 2, 7, heads=2, concat=False)
mask_types = ['edge', 'node_and_edge', 'node']
methods = [
    'Saliency',
    'InputXGradient',
    'Deconvolution',
    'FeatureAblation',
    'ShapleyValueSampling',
    'IntegratedGradients',
    'GradientShap',
    'Occlusion',
    'GuidedBackprop',
    'KernelShap',
    'Lime',
]


@pytest.mark.parametrize('mask_type', mask_types)
@pytest.mark.parametrize('model', [GCN, GAT])
@pytest.mark.parametrize('output_idx', [None, 1])
def test_to_captum(model, mask_type, output_idx):
    captum_model = to_captum_model(model, mask_type=mask_type,
                                   output_idx=output_idx)
    pre_out = model(x, edge_index)
    if mask_type == 'node':
        mask = x * 0.0
        out = captum_model(mask.unsqueeze(0), edge_index)
    elif mask_type == 'edge':
        mask = torch.ones(edge_index.shape[1], dtype=torch.float,
                          requires_grad=True) * 0.5
        out = captum_model(mask.unsqueeze(0), x, edge_index)
    elif mask_type == 'node_and_edge':
        node_mask = x * 0.0
        edge_mask = torch.ones(edge_index.shape[1], dtype=torch.float,
                               requires_grad=True) * 0.5
        out = captum_model(node_mask.unsqueeze(0), edge_mask.unsqueeze(0),
                           edge_index)

    if output_idx is not None:
        assert out.shape == (1, 7)
        assert torch.any(out != pre_out[[output_idx]])
    else:
        assert out.shape == (8, 7)
        assert torch.any(out != pre_out)


@withPackage('captum')
@pytest.mark.parametrize('mask_type', mask_types)
@pytest.mark.parametrize('method', methods)
def test_captum_attribution_methods(mask_type, method):
    from captum import attr  # noqa

    captum_model = to_captum_model(GCN, mask_type, 0)
    explainer = getattr(attr, method)(captum_model)
    data = Data(x, edge_index)
    input, additional_forward_args = to_captum_input(data.x, data.edge_index,
                                                     mask_type)
    if mask_type == 'node':
        sliding_window_shapes = (3, 3)
    elif mask_type == 'edge':
        sliding_window_shapes = (5, )
    elif mask_type == 'node_and_edge':
        sliding_window_shapes = ((3, 3), (5, ))

    if method == 'IntegratedGradients':
        attributions, delta = explainer.attribute(
            input, target=0, internal_batch_size=1,
            additional_forward_args=additional_forward_args,
            return_convergence_delta=True)
    elif method == 'GradientShap':
        attributions, delta = explainer.attribute(
            input, target=0, return_convergence_delta=True, baselines=input,
            n_samples=1, additional_forward_args=additional_forward_args)
    elif method == 'DeepLiftShap' or method == 'DeepLift':
        attributions, delta = explainer.attribute(
            input, target=0, return_convergence_delta=True, baselines=input,
            additional_forward_args=additional_forward_args)
    elif method == 'Occlusion':
        attributions = explainer.attribute(
            input, target=0, sliding_window_shapes=sliding_window_shapes,
            additional_forward_args=additional_forward_args)
    else:
        attributions = explainer.attribute(
            input, target=0, additional_forward_args=additional_forward_args)
    if mask_type == 'node':
        assert attributions[0].shape == (1, 8, 3)
    elif mask_type == 'edge':
        assert attributions[0].shape == (1, 14)
    else:
        assert attributions[0].shape == (1, 8, 3)
        assert attributions[1].shape == (1, 14)


def test_custom_explain_message():
    x = torch.randn(4, 8)
    edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])

    conv = SAGEConv(8, 32)

    def explain_message(self, inputs, x_i, x_j):
        assert isinstance(self, SAGEConv)
        assert inputs.size() == (6, 8)
        assert inputs.size() == x_i.size() == x_j.size()
        assert torch.allclose(inputs, x_j)
        self.x_i = x_i
        self.x_j = x_j
        return inputs

    conv.explain_message = explain_message.__get__(conv, MessagePassing)
    conv.explain = True

    conv(x, edge_index)

    assert torch.allclose(conv.x_i, x[edge_index[1]])
    assert torch.allclose(conv.x_j, x[edge_index[0]])


@withPackage('captum')
@pytest.mark.parametrize('mask_type', ['node', 'edge', 'node_and_edge'])
def test_to_captum_input(mask_type):
    num_nodes = x.shape[0]
    num_node_feats = x.shape[1]
    num_edges = edge_index.shape[1]

    # Check for Data:
    data = Data(x, edge_index)
    args = 'test_args'
    inputs, additional_forward_args = to_captum_input(data.x, data.edge_index,
                                                      mask_type, args)
    if mask_type == 'node':
        assert len(inputs) == 1
        assert inputs[0].shape == (1, num_nodes, num_node_feats)
        assert len(additional_forward_args) == 2
        assert torch.allclose(additional_forward_args[0], edge_index)
    elif mask_type == 'edge':
        assert len(inputs) == 1
        assert inputs[0].shape == (1, num_edges)
        assert inputs[0].sum() == num_edges
        assert len(additional_forward_args) == 3
        assert torch.allclose(additional_forward_args[0], x)
        assert torch.allclose(additional_forward_args[1], edge_index)
    else:
        assert len(inputs) == 2
        assert inputs[0].shape == (1, num_nodes, num_node_feats)
        assert inputs[1].shape == (1, num_edges)
        assert inputs[1].sum() == num_edges
        assert len(additional_forward_args) == 2
        assert torch.allclose(additional_forward_args[0], edge_index)

    # Check for HeteroData:
    data = HeteroData()
    x2 = torch.rand(8, 3)
    data['paper'].x = x
    data['author'].x = x2
    data['paper', 'to', 'author'].edge_index = edge_index
    data['author', 'to', 'paper'].edge_index = edge_index.flip([0])
    inputs, additional_forward_args = to_captum_input(data.x_dict,
                                                      data.edge_index_dict,
                                                      mask_type, args)
    if mask_type == 'node':
        assert len(inputs) == 2
        assert inputs[0].shape == (1, num_nodes, num_node_feats)
        assert inputs[1].shape == (1, num_nodes, num_node_feats)
        assert len(additional_forward_args) == 2
        for key in data.edge_types:
            torch.allclose(additional_forward_args[0][key],
                           data[key].edge_index)
    elif mask_type == 'edge':
        assert len(inputs) == 2
        assert inputs[0].shape == (1, num_edges)
        assert inputs[1].shape == (1, num_edges)
        assert inputs[1].sum() == inputs[0].sum() == num_edges
        assert len(additional_forward_args) == 3
        for key in data.node_types:
            torch.allclose(additional_forward_args[0][key], data[key].x)
        for key in data.edge_types:
            torch.allclose(additional_forward_args[1][key],
                           data[key].edge_index)
    else:
        assert len(inputs) == 4
        assert inputs[0].shape == (1, num_nodes, num_node_feats)
        assert inputs[1].shape == (1, num_nodes, num_node_feats)
        assert inputs[2].shape == (1, num_edges)
        assert inputs[3].shape == (1, num_edges)
        assert inputs[3].sum() == inputs[2].sum() == num_edges
        assert len(additional_forward_args) == 2
        for key in data.edge_types:
            torch.allclose(additional_forward_args[0][key],
                           data[key].edge_index)