1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
from typing import Optional
import pytest
import torch
from torch_geometric.explain import Explainer, Explanation
from torch_geometric.explain.algorithm import CaptumExplainer
from torch_geometric.explain.config import (
MaskType,
ModelConfig,
ModelMode,
ModelReturnType,
ModelTaskLevel,
)
from torch_geometric.nn import GCNConv, global_add_pool
from torch_geometric.testing import withPackage
methods = [
'Saliency',
'InputXGradient',
'Deconvolution',
'ShapleyValueSampling',
'IntegratedGradients',
'GuidedBackprop',
]
unsupported_methods = [
'FeatureAblation',
'Occlusion',
'DeepLift',
'DeepLiftShap',
'GradientShap',
'KernelShap',
'Lime',
]
class GCN(torch.nn.Module):
def __init__(self, model_config: ModelConfig):
super().__init__()
self.model_config = model_config
if model_config.mode == ModelMode.multiclass_classification:
out_channels = 7
else:
out_channels = 1
self.conv1 = GCNConv(3, 16)
self.conv2 = GCNConv(16, out_channels)
# Add unused parameter:
self.param = torch.nn.Parameter(torch.empty(1))
def forward(self, x, edge_index, batch=None, edge_label_index=None):
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index)
if self.model_config.task_level == ModelTaskLevel.graph:
x = global_add_pool(x, batch)
elif self.model_config.task_level == ModelTaskLevel.edge:
assert edge_label_index is not None
x = x[edge_label_index[0]] * x[edge_label_index[1]]
if self.model_config.mode == ModelMode.binary_classification:
if self.model_config.return_type == ModelReturnType.probs:
x = x.sigmoid()
elif self.model_config.mode == ModelMode.multiclass_classification:
if self.model_config.return_type == ModelReturnType.probs:
x = x.softmax(dim=-1)
elif self.model_config.return_type == ModelReturnType.log_probs:
x = x.log_softmax(dim=-1)
return x
node_mask_types = [MaskType.attributes, None]
edge_mask_types = [MaskType.object, None]
task_levels = [ModelTaskLevel.node, ModelTaskLevel.edge, ModelTaskLevel.graph]
indices = [1, torch.arange(2)]
def check_explanation(
explanation: Explanation,
node_mask_type: Optional[MaskType],
edge_mask_type: Optional[MaskType],
):
if node_mask_type == MaskType.attributes:
assert explanation.node_mask.size() == explanation.x.size()
elif node_mask_type is None:
assert 'node_mask' not in explanation
if edge_mask_type == MaskType.object:
assert explanation.edge_mask.size() == (explanation.num_edges, )
elif edge_mask_type is None:
assert 'edge_mask' not in explanation
@withPackage('captum')
@pytest.mark.parametrize('method', unsupported_methods)
def test_unsupported_methods(method):
model_config = ModelConfig(mode='regression', task_level='node')
with pytest.raises(ValueError, match="does not support attribution"):
Explainer(
GCN(model_config),
algorithm=CaptumExplainer(method),
explanation_type='model',
edge_mask_type='object',
node_mask_type='attributes',
model_config=model_config,
)
@withPackage('captum')
@pytest.mark.parametrize('method', ['IntegratedGradients'])
@pytest.mark.parametrize('node_mask_type', node_mask_types)
@pytest.mark.parametrize('edge_mask_type', edge_mask_types)
@pytest.mark.parametrize('task_level', task_levels)
@pytest.mark.parametrize('index', indices)
def test_captum_explainer_binary_classification(
method,
data,
node_mask_type,
edge_mask_type,
task_level,
index,
):
if node_mask_type is None and edge_mask_type is None:
return
batch = torch.tensor([0, 0, 1, 1])
edge_label_index = torch.tensor([[0, 1, 2], [2, 3, 1]])
model_config = ModelConfig(
mode='binary_classification',
task_level=task_level,
return_type='probs',
)
explainer = Explainer(
GCN(model_config),
algorithm=CaptumExplainer(method),
explanation_type='model',
edge_mask_type=edge_mask_type,
node_mask_type=node_mask_type,
model_config=model_config,
)
explanation = explainer(
data.x,
data.edge_index,
index=index,
batch=batch,
edge_label_index=edge_label_index,
)
check_explanation(explanation, node_mask_type, edge_mask_type)
@withPackage('captum')
@pytest.mark.parametrize('method', methods)
@pytest.mark.parametrize('node_mask_type', node_mask_types)
@pytest.mark.parametrize('edge_mask_type', edge_mask_types)
@pytest.mark.parametrize('task_level', task_levels)
@pytest.mark.parametrize('index', indices)
def test_captum_explainer_multiclass_classification(
method,
data,
node_mask_type,
edge_mask_type,
task_level,
index,
):
if node_mask_type is None and edge_mask_type is None:
return
batch = torch.tensor([0, 0, 1, 1])
edge_label_index = torch.tensor([[0, 1, 2], [2, 3, 1]])
model_config = ModelConfig(
mode='multiclass_classification',
task_level=task_level,
return_type='probs',
)
explainer = Explainer(
GCN(model_config),
algorithm=CaptumExplainer(method),
explanation_type='model',
edge_mask_type=edge_mask_type,
node_mask_type=node_mask_type,
model_config=model_config,
)
explanation = explainer(
data.x,
data.edge_index,
index=index,
batch=batch,
edge_label_index=edge_label_index,
)
check_explanation(explanation, node_mask_type, edge_mask_type)
@withPackage('captum')
@pytest.mark.parametrize(
'method',
[m for m in methods if m != 'ShapleyValueSampling'],
)
@pytest.mark.parametrize(
'node_mask_type',
[nm for nm in node_mask_types if nm is not None],
)
@pytest.mark.parametrize(
'edge_mask_type',
[em for em in edge_mask_types if em is not None],
)
@pytest.mark.parametrize('index', [1, torch.arange(2)])
def test_captum_hetero_data(method, node_mask_type, edge_mask_type, index,
hetero_data, hetero_model):
model_config = ModelConfig(mode='regression', task_level='node')
explainer = Explainer(
hetero_model(hetero_data.metadata()),
algorithm=CaptumExplainer(method),
edge_mask_type=edge_mask_type,
node_mask_type=node_mask_type,
model_config=model_config,
explanation_type='model',
)
explanation = explainer(hetero_data.x_dict, hetero_data.edge_index_dict,
index=index)
explanation.validate(raise_on_error=True)
@withPackage('captum')
@pytest.mark.parametrize('node_mask_type', [
MaskType.object,
MaskType.common_attributes,
])
def test_captum_explainer_supports(node_mask_type):
model_config = ModelConfig(
mode='multiclass_classification',
task_level='node',
return_type='probs',
)
with pytest.raises(ValueError, match="not support the given explanation"):
Explainer(
GCN(model_config),
algorithm=CaptumExplainer('IntegratedGradients'),
edge_mask_type=MaskType.object,
node_mask_type=node_mask_type,
model_config=model_config,
explanation_type='model',
)
|