1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
import pytest
import torch
from torch_geometric.explain import Explainer, PGExplainer
from torch_geometric.explain.config import (
ModelConfig,
ModelMode,
ModelTaskLevel,
)
from torch_geometric.nn import GCNConv, global_add_pool
from torch_geometric.testing import withCUDA
class GCN(torch.nn.Module):
def __init__(self, model_config: ModelConfig):
super().__init__()
self.model_config = model_config
if model_config.mode == ModelMode.multiclass_classification:
out_channels = 7
else:
out_channels = 1
self.conv1 = GCNConv(3, 16)
self.conv2 = GCNConv(16, out_channels)
def forward(self, x, edge_index, batch=None, edge_label_index=None):
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index)
if self.model_config.task_level == ModelTaskLevel.graph:
x = global_add_pool(x, batch)
return x
@withCUDA
@pytest.mark.parametrize('mode', [
ModelMode.binary_classification,
ModelMode.multiclass_classification,
ModelMode.regression,
])
def test_pg_explainer_node(device, check_explanation, mode):
x = torch.randn(8, 3, device=device)
edge_index = torch.tensor([
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7],
[1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6],
], device=device)
if mode == ModelMode.binary_classification:
target = torch.randint(2, (x.size(0), ), device=device)
elif mode == ModelMode.multiclass_classification:
target = torch.randint(7, (x.size(0), ), device=device)
elif mode == ModelMode.regression:
target = torch.randn((x.size(0), 1), device=device)
model_config = ModelConfig(mode=mode, task_level='node', return_type='raw')
model = GCN(model_config).to(device)
explainer = Explainer(
model=model,
algorithm=PGExplainer(epochs=2).to(device),
explanation_type='phenomenon',
edge_mask_type='object',
model_config=model_config,
)
with pytest.raises(ValueError, match="not yet fully trained"):
explainer(x, edge_index, target=target)
explainer.algorithm.reset_parameters()
for epoch in range(2):
for index in range(x.size(0)):
loss = explainer.algorithm.train(epoch, model, x, edge_index,
target=target, index=index)
assert loss >= 0.0
explanation = explainer(x, edge_index, target=target, index=0)
check_explanation(explanation, None, explainer.edge_mask_type)
@withCUDA
@pytest.mark.parametrize('mode', [
ModelMode.binary_classification,
ModelMode.multiclass_classification,
ModelMode.regression,
])
def test_pg_explainer_graph(device, check_explanation, mode):
x = torch.randn(8, 3, device=device)
edge_index = torch.tensor([
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7],
[1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6],
], device=device)
if mode == ModelMode.binary_classification:
target = torch.randint(2, (1, ), device=device)
elif mode == ModelMode.multiclass_classification:
target = torch.randint(7, (1, ), device=device)
elif mode == ModelMode.regression:
target = torch.randn((1, 1), device=device)
model_config = ModelConfig(mode=mode, task_level='graph',
return_type='raw')
model = GCN(model_config).to(device)
explainer = Explainer(
model=model,
algorithm=PGExplainer(epochs=2).to(device),
explanation_type='phenomenon',
edge_mask_type='object',
model_config=model_config,
)
with pytest.raises(ValueError, match="not yet fully trained"):
explainer(x, edge_index, target=target)
explainer.algorithm.reset_parameters()
for epoch in range(2):
loss = explainer.algorithm.train(epoch, model, x, edge_index,
target=target)
assert loss >= 0.0
explanation = explainer(x, edge_index, target=target)
check_explanation(explanation, None, explainer.edge_mask_type)
def test_pg_explainer_supports():
# Test unsupported model task level:
with pytest.raises(ValueError, match="not support the given explanation"):
model_config = ModelConfig(
mode='binary_classification',
task_level='edge',
return_type='raw',
)
Explainer(
model=GCN(model_config),
algorithm=PGExplainer(epochs=2),
explanation_type='phenomenon',
edge_mask_type='object',
model_config=model_config,
)
# Test unsupported explanation type:
with pytest.raises(ValueError, match="not support the given explanation"):
model_config = ModelConfig(
mode='binary_classification',
task_level='node',
return_type='raw',
)
Explainer(
model=GCN(model_config),
algorithm=PGExplainer(epochs=2),
explanation_type='model',
edge_mask_type='object',
model_config=model_config,
)
# Test unsupported node mask:
with pytest.raises(ValueError, match="not support the given explanation"):
model_config = ModelConfig(
mode='binary_classification',
task_level='node',
return_type='raw',
)
Explainer(
model=GCN(model_config),
algorithm=PGExplainer(epochs=2),
explanation_type='model',
node_mask_type='object',
edge_mask_type='object',
model_config=model_config,
)
|