File: test_pg_explainer.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (174 lines) | stat: -rw-r--r-- 5,679 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import pytest
import torch

from torch_geometric.explain import Explainer, PGExplainer
from torch_geometric.explain.config import (
    ModelConfig,
    ModelMode,
    ModelTaskLevel,
)
from torch_geometric.nn import GCNConv, global_add_pool
from torch_geometric.testing import withCUDA


class GCN(torch.nn.Module):
    def __init__(self, model_config: ModelConfig):
        super().__init__()
        self.model_config = model_config

        if model_config.mode == ModelMode.multiclass_classification:
            out_channels = 7
        else:
            out_channels = 1

        self.conv1 = GCNConv(3, 16)
        self.conv2 = GCNConv(16, out_channels)

    def forward(self, x, edge_index, batch=None, edge_label_index=None):
        x = self.conv1(x, edge_index).relu()
        x = self.conv2(x, edge_index)
        if self.model_config.task_level == ModelTaskLevel.graph:
            x = global_add_pool(x, batch)
        return x


@withCUDA
@pytest.mark.parametrize('mode', [
    ModelMode.binary_classification,
    ModelMode.multiclass_classification,
    ModelMode.regression,
])
def test_pg_explainer_node(device, check_explanation, mode):
    x = torch.randn(8, 3, device=device)
    edge_index = torch.tensor([
        [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7],
        [1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6],
    ], device=device)

    if mode == ModelMode.binary_classification:
        target = torch.randint(2, (x.size(0), ), device=device)
    elif mode == ModelMode.multiclass_classification:
        target = torch.randint(7, (x.size(0), ), device=device)
    elif mode == ModelMode.regression:
        target = torch.randn((x.size(0), 1), device=device)

    model_config = ModelConfig(mode=mode, task_level='node', return_type='raw')

    model = GCN(model_config).to(device)

    explainer = Explainer(
        model=model,
        algorithm=PGExplainer(epochs=2).to(device),
        explanation_type='phenomenon',
        edge_mask_type='object',
        model_config=model_config,
    )

    with pytest.raises(ValueError, match="not yet fully trained"):
        explainer(x, edge_index, target=target)

    explainer.algorithm.reset_parameters()
    for epoch in range(2):
        for index in range(x.size(0)):
            loss = explainer.algorithm.train(epoch, model, x, edge_index,
                                             target=target, index=index)
            assert loss >= 0.0

    explanation = explainer(x, edge_index, target=target, index=0)

    check_explanation(explanation, None, explainer.edge_mask_type)


@withCUDA
@pytest.mark.parametrize('mode', [
    ModelMode.binary_classification,
    ModelMode.multiclass_classification,
    ModelMode.regression,
])
def test_pg_explainer_graph(device, check_explanation, mode):
    x = torch.randn(8, 3, device=device)
    edge_index = torch.tensor([
        [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7],
        [1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6],
    ], device=device)

    if mode == ModelMode.binary_classification:
        target = torch.randint(2, (1, ), device=device)
    elif mode == ModelMode.multiclass_classification:
        target = torch.randint(7, (1, ), device=device)
    elif mode == ModelMode.regression:
        target = torch.randn((1, 1), device=device)

    model_config = ModelConfig(mode=mode, task_level='graph',
                               return_type='raw')

    model = GCN(model_config).to(device)

    explainer = Explainer(
        model=model,
        algorithm=PGExplainer(epochs=2).to(device),
        explanation_type='phenomenon',
        edge_mask_type='object',
        model_config=model_config,
    )

    with pytest.raises(ValueError, match="not yet fully trained"):
        explainer(x, edge_index, target=target)

    explainer.algorithm.reset_parameters()
    for epoch in range(2):
        loss = explainer.algorithm.train(epoch, model, x, edge_index,
                                         target=target)
        assert loss >= 0.0

    explanation = explainer(x, edge_index, target=target)

    check_explanation(explanation, None, explainer.edge_mask_type)


def test_pg_explainer_supports():
    # Test unsupported model task level:
    with pytest.raises(ValueError, match="not support the given explanation"):
        model_config = ModelConfig(
            mode='binary_classification',
            task_level='edge',
            return_type='raw',
        )
        Explainer(
            model=GCN(model_config),
            algorithm=PGExplainer(epochs=2),
            explanation_type='phenomenon',
            edge_mask_type='object',
            model_config=model_config,
        )

    # Test unsupported explanation type:
    with pytest.raises(ValueError, match="not support the given explanation"):
        model_config = ModelConfig(
            mode='binary_classification',
            task_level='node',
            return_type='raw',
        )
        Explainer(
            model=GCN(model_config),
            algorithm=PGExplainer(epochs=2),
            explanation_type='model',
            edge_mask_type='object',
            model_config=model_config,
        )

    # Test unsupported node mask:
    with pytest.raises(ValueError, match="not support the given explanation"):
        model_config = ModelConfig(
            mode='binary_classification',
            task_level='node',
            return_type='raw',
        )
        Explainer(
            model=GCN(model_config),
            algorithm=PGExplainer(epochs=2),
            explanation_type='model',
            node_mask_type='object',
            edge_mask_type='object',
            model_config=model_config,
        )