File: conftest.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (94 lines) | stat: -rw-r--r-- 3,142 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from typing import Optional

import pytest
import torch

from torch_geometric.data import Data, HeteroData
from torch_geometric.explain import Explanation
from torch_geometric.explain.config import MaskType
from torch_geometric.nn import SAGEConv, to_hetero
from torch_geometric.testing import get_random_edge_index


@pytest.fixture()
def data():
    return Data(
        x=torch.randn(4, 3),
        edge_index=get_random_edge_index(4, 4, num_edges=6),
        edge_attr=torch.randn(6, 3),
    )


@pytest.fixture()
def hetero_data():
    data = HeteroData()
    data['paper'].x = torch.randn(8, 16)
    data['author'].x = torch.randn(10, 8)

    data['paper', 'paper'].edge_index = get_random_edge_index(8, 8, 10)
    data['paper', 'paper'].edge_attr = torch.randn(10, 16)
    data['paper', 'author'].edge_index = get_random_edge_index(8, 10, 10)
    data['paper', 'author'].edge_attr = torch.randn(10, 8)
    data['author', 'paper'].edge_index = get_random_edge_index(10, 8, 10)
    data['author', 'paper'].edge_attr = torch.randn(10, 8)

    return data


@pytest.fixture()
def hetero_model():
    return HeteroSAGE


class GraphSAGE(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = SAGEConv((-1, -1), 32)
        self.conv2 = SAGEConv((-1, -1), 32)

    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index).relu()
        return self.conv2(x, edge_index)


class HeteroSAGE(torch.nn.Module):
    def __init__(self, metadata):
        super().__init__()
        self.graph_sage = to_hetero(GraphSAGE(), metadata, debug=False)
        self.lin = torch.nn.Linear(32, 1)

    def forward(self, x_dict, edge_index_dict,
                additonal_arg=None) -> torch.Tensor:
        return self.lin(self.graph_sage(x_dict, edge_index_dict)['paper'])


@pytest.fixture()
def check_explanation():
    def _check_explanation(
        explanation: Explanation,
        node_mask_type: Optional[MaskType],
        edge_mask_type: Optional[MaskType],
    ):
        if node_mask_type == MaskType.attributes:
            assert explanation.node_mask.size() == explanation.x.size()
            assert explanation.node_mask.min() >= 0
            assert explanation.node_mask.max() <= 1
        elif node_mask_type == MaskType.object:
            assert explanation.node_mask.size() == (explanation.num_nodes, 1)
            assert explanation.node_mask.min() >= 0
            assert explanation.node_mask.max() <= 1
        elif node_mask_type == MaskType.common_attributes:
            assert explanation.node_mask.size() == (1, explanation.x.size(-1))
            assert explanation.node_mask.min() >= 0
            assert explanation.node_mask.max() <= 1
        elif node_mask_type is None:
            assert 'node_mask' not in explanation

        if edge_mask_type == MaskType.object:
            assert explanation.edge_mask.size() == (explanation.num_edges, )
            assert explanation.edge_mask.min() >= 0
            assert explanation.edge_mask.max() <= 1
        elif edge_mask_type is None:
            assert 'edge_mask' not in explanation

    return _check_explanation