1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
import os.path as osp
from typing import Optional, Union
import pytest
import torch
from torch_geometric.data import Data
from torch_geometric.explain import Explanation
from torch_geometric.explain.config import MaskType
from torch_geometric.testing import withPackage
def create_random_explanation(
data: Data,
node_mask_type: Optional[Union[MaskType, str]] = None,
edge_mask_type: Optional[Union[MaskType, str]] = None,
):
if node_mask_type is not None:
node_mask_type = MaskType(node_mask_type)
if edge_mask_type is not None:
edge_mask_type = MaskType(edge_mask_type)
if node_mask_type == MaskType.object:
node_mask = torch.rand(data.x.size(0), 1)
elif node_mask_type == MaskType.common_attributes:
node_mask = torch.rand(1, data.x.size(1))
elif node_mask_type == MaskType.attributes:
node_mask = torch.rand_like(data.x)
else:
node_mask = None
if edge_mask_type == MaskType.object:
edge_mask = torch.rand(data.edge_index.size(1))
else:
edge_mask = None
return Explanation( # Create explanation.
node_mask=node_mask,
edge_mask=edge_mask,
x=data.x,
edge_index=data.edge_index,
edge_attr=data.edge_attr,
)
@pytest.mark.parametrize('node_mask_type',
[None, 'object', 'common_attributes', 'attributes'])
@pytest.mark.parametrize('edge_mask_type', [None, 'object'])
def test_available_explanations(data, node_mask_type, edge_mask_type):
expected = []
if node_mask_type is not None:
expected.append('node_mask')
if edge_mask_type is not None:
expected.append('edge_mask')
explanation = create_random_explanation(
data,
node_mask_type=node_mask_type,
edge_mask_type=edge_mask_type,
)
assert set(explanation.available_explanations) == set(expected)
def test_validate_explanation(data):
explanation = create_random_explanation(data)
explanation.validate(raise_on_error=True)
with pytest.raises(ValueError, match="with 5 nodes"):
explanation = create_random_explanation(data, node_mask_type='object')
explanation.x = torch.randn(5, 5)
explanation.validate(raise_on_error=True)
with pytest.raises(ValueError, match="with 4 features"):
explanation = create_random_explanation(data, 'attributes')
explanation.x = torch.randn(4, 4)
explanation.validate(raise_on_error=True)
with pytest.raises(ValueError, match="with 7 edges"):
explanation = create_random_explanation(data, edge_mask_type='object')
explanation.edge_index = torch.randint(0, 4, (2, 7))
explanation.validate(raise_on_error=True)
def test_node_mask(data):
node_mask = torch.tensor([[1.], [0.], [1.], [0.]])
explanation = Explanation(
node_mask=node_mask,
x=data.x,
edge_index=data.edge_index,
edge_attr=data.edge_attr,
)
explanation.validate(raise_on_error=True)
out = explanation.get_explanation_subgraph()
assert out.node_mask.size() == (2, 1)
assert (out.node_mask > 0.0).sum() == 2
assert out.x.size() == (2, 3)
assert out.edge_index.size(1) <= 6
assert out.edge_index.size(1) == out.edge_attr.size(0)
out = explanation.get_complement_subgraph()
assert out.node_mask.size() == (2, 1)
assert (out.node_mask == 0.0).sum() == 2
assert out.x.size() == (2, 3)
assert out.edge_index.size(1) <= 6
assert out.edge_index.size(1) == out.edge_attr.size(0)
def test_edge_mask(data):
edge_mask = torch.tensor([1., 0., 1., 0., 0., 1.])
explanation = Explanation(
edge_mask=edge_mask,
x=data.x,
edge_index=data.edge_index,
edge_attr=data.edge_attr,
)
explanation.validate(raise_on_error=True)
out = explanation.get_explanation_subgraph()
assert out.x.size() == (4, 3)
assert out.edge_mask.size() == (3, )
assert (out.edge_mask > 0.0).sum() == 3
assert out.edge_index.size() == (2, 3)
assert out.edge_attr.size() == (3, 3)
out = explanation.get_complement_subgraph()
assert out.x.size() == (4, 3)
assert out.edge_mask.size() == (3, )
assert (out.edge_mask == 0.0).sum() == 3
assert out.edge_index.size() == (2, 3)
assert out.edge_attr.size() == (3, 3)
@withPackage('matplotlib', 'pandas')
@pytest.mark.parametrize('top_k', [2, None])
@pytest.mark.parametrize('node_mask_type', [None, 'attributes'])
def test_visualize_feature_importance(tmp_path, data, top_k, node_mask_type):
explanation = create_random_explanation(data, node_mask_type)
path = osp.join(tmp_path, 'feature_importance.png')
if node_mask_type is None:
with pytest.raises(ValueError, match="node_mask' is not"):
explanation.visualize_feature_importance(path, top_k=top_k)
else:
explanation.visualize_feature_importance(path, top_k=top_k)
assert osp.exists(path)
|