File: test_hetero_explanation.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (144 lines) | stat: -rw-r--r-- 5,167 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os.path as osp
from typing import Optional, Union

import pytest
import torch

from torch_geometric.data import HeteroData
from torch_geometric.explain import HeteroExplanation
from torch_geometric.explain.config import MaskType
from torch_geometric.testing import withPackage


def create_random_explanation(
    hetero_data: HeteroData,
    node_mask_type: Optional[Union[MaskType, str]] = None,
    edge_mask_type: Optional[Union[MaskType, str]] = None,
):
    if node_mask_type is not None:
        node_mask_type = MaskType(node_mask_type)
    if edge_mask_type is not None:
        edge_mask_type = MaskType(edge_mask_type)

    out = HeteroExplanation()

    for key in ['paper', 'author']:
        out[key].x = hetero_data[key].x
        if node_mask_type == MaskType.object:
            out[key].node_mask = torch.rand(hetero_data[key].num_nodes, 1)
        elif node_mask_type == MaskType.common_attributes:
            out[key].node_mask = torch.rand(1, hetero_data[key].num_features)
        elif node_mask_type == MaskType.attributes:
            out[key].node_mask = torch.rand_like(hetero_data[key].x)

    for key in [('paper', 'paper'), ('paper', 'author')]:
        out[key].edge_index = hetero_data[key].edge_index
        out[key].edge_attr = hetero_data[key].edge_attr
        if edge_mask_type == MaskType.object:
            out[key].edge_mask = torch.rand(hetero_data[key].num_edges)

    return out


@pytest.mark.parametrize('node_mask_type',
                         [None, 'object', 'common_attributes', 'attributes'])
@pytest.mark.parametrize('edge_mask_type', [None, 'object'])
def test_available_explanations(hetero_data, node_mask_type, edge_mask_type):
    expected = []
    if node_mask_type:
        expected.append('node_mask')
    if edge_mask_type:
        expected.append('edge_mask')

    explanation = create_random_explanation(
        hetero_data,
        node_mask_type=node_mask_type,
        edge_mask_type=edge_mask_type,
    )

    assert set(explanation.available_explanations) == set(expected)


def test_validate_explanation(hetero_data):
    explanation = create_random_explanation(hetero_data)
    explanation.validate(raise_on_error=True)

    with pytest.raises(ValueError, match="with 8 nodes"):
        explanation = create_random_explanation(hetero_data)
        explanation['paper'].node_mask = torch.rand(5, 5)
        explanation.validate(raise_on_error=True)

    with pytest.raises(ValueError, match="with 5 features"):
        explanation = create_random_explanation(hetero_data, 'attributes')
        explanation['paper'].x = torch.randn(8, 5)
        explanation.validate(raise_on_error=True)

    with pytest.raises(ValueError, match="with 10 edges"):
        explanation = create_random_explanation(hetero_data)
        explanation['paper', 'paper'].edge_mask = torch.randn(5)
        explanation.validate(raise_on_error=True)


def test_node_mask():
    explanation = HeteroExplanation()
    explanation['paper'].node_mask = torch.tensor([[1.], [0.], [1.], [1.]])
    explanation['author'].node_mask = torch.tensor([[1.], [0.], [1.], [1.]])
    with pytest.warns(UserWarning, match="are isolated"):
        explanation.validate(raise_on_error=True)

    out = explanation.get_explanation_subgraph()
    assert out['paper'].node_mask.size() == (3, 1)
    assert out['author'].node_mask.size() == (3, 1)

    out = explanation.get_complement_subgraph()
    assert out['paper'].node_mask.size() == (1, 1)
    assert out['author'].node_mask.size() == (1, 1)


def test_edge_mask():
    explanation = HeteroExplanation()
    explanation['paper'].num_nodes = 4
    explanation['author'].num_nodes = 4
    explanation['paper', 'author'].edge_index = torch.tensor([
        [0, 1, 2, 3],
        [0, 1, 2, 3],
    ])
    explanation['paper', 'author'].edge_mask = torch.tensor([1., 0., 1., 1.])

    out = explanation.get_explanation_subgraph()
    assert out['paper'].num_nodes == 4
    assert out['author'].num_nodes == 4
    assert out['paper', 'author'].edge_mask.size() == (3, )
    assert torch.equal(out['paper', 'author'].edge_index,
                       torch.tensor([[0, 2, 3], [0, 2, 3]]))

    out = explanation.get_complement_subgraph()
    assert out['paper'].num_nodes == 4
    assert out['author'].num_nodes == 4
    assert out['paper', 'author'].edge_mask.size() == (1, )
    assert torch.equal(out['paper', 'author'].edge_index,
                       torch.tensor([[1], [1]]))


@withPackage('matplotlib')
@pytest.mark.parametrize('top_k', [2, None])
@pytest.mark.parametrize('node_mask_type', [None, 'attributes'])
def test_visualize_feature_importance(
    top_k,
    node_mask_type,
    tmp_path,
    hetero_data,
):
    explanation = create_random_explanation(
        hetero_data,
        node_mask_type=node_mask_type,
    )

    path = osp.join(tmp_path, 'feature_importance.png')

    if node_mask_type is None:
        with pytest.raises(KeyError, match="Tried to collect 'node_mask'"):
            explanation.visualize_feature_importance(path, top_k=top_k)
    else:
        explanation.visualize_feature_importance(path, top_k=top_k)
        assert osp.exists(path)