1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
import os.path as osp
from typing import Optional, Union
import pytest
import torch
from torch_geometric.data import HeteroData
from torch_geometric.explain import HeteroExplanation
from torch_geometric.explain.config import MaskType
from torch_geometric.testing import withPackage
def create_random_explanation(
hetero_data: HeteroData,
node_mask_type: Optional[Union[MaskType, str]] = None,
edge_mask_type: Optional[Union[MaskType, str]] = None,
):
if node_mask_type is not None:
node_mask_type = MaskType(node_mask_type)
if edge_mask_type is not None:
edge_mask_type = MaskType(edge_mask_type)
out = HeteroExplanation()
for key in ['paper', 'author']:
out[key].x = hetero_data[key].x
if node_mask_type == MaskType.object:
out[key].node_mask = torch.rand(hetero_data[key].num_nodes, 1)
elif node_mask_type == MaskType.common_attributes:
out[key].node_mask = torch.rand(1, hetero_data[key].num_features)
elif node_mask_type == MaskType.attributes:
out[key].node_mask = torch.rand_like(hetero_data[key].x)
for key in [('paper', 'paper'), ('paper', 'author')]:
out[key].edge_index = hetero_data[key].edge_index
out[key].edge_attr = hetero_data[key].edge_attr
if edge_mask_type == MaskType.object:
out[key].edge_mask = torch.rand(hetero_data[key].num_edges)
return out
@pytest.mark.parametrize('node_mask_type',
[None, 'object', 'common_attributes', 'attributes'])
@pytest.mark.parametrize('edge_mask_type', [None, 'object'])
def test_available_explanations(hetero_data, node_mask_type, edge_mask_type):
expected = []
if node_mask_type:
expected.append('node_mask')
if edge_mask_type:
expected.append('edge_mask')
explanation = create_random_explanation(
hetero_data,
node_mask_type=node_mask_type,
edge_mask_type=edge_mask_type,
)
assert set(explanation.available_explanations) == set(expected)
def test_validate_explanation(hetero_data):
explanation = create_random_explanation(hetero_data)
explanation.validate(raise_on_error=True)
with pytest.raises(ValueError, match="with 8 nodes"):
explanation = create_random_explanation(hetero_data)
explanation['paper'].node_mask = torch.rand(5, 5)
explanation.validate(raise_on_error=True)
with pytest.raises(ValueError, match="with 5 features"):
explanation = create_random_explanation(hetero_data, 'attributes')
explanation['paper'].x = torch.randn(8, 5)
explanation.validate(raise_on_error=True)
with pytest.raises(ValueError, match="with 10 edges"):
explanation = create_random_explanation(hetero_data)
explanation['paper', 'paper'].edge_mask = torch.randn(5)
explanation.validate(raise_on_error=True)
def test_node_mask():
explanation = HeteroExplanation()
explanation['paper'].node_mask = torch.tensor([[1.], [0.], [1.], [1.]])
explanation['author'].node_mask = torch.tensor([[1.], [0.], [1.], [1.]])
with pytest.warns(UserWarning, match="are isolated"):
explanation.validate(raise_on_error=True)
out = explanation.get_explanation_subgraph()
assert out['paper'].node_mask.size() == (3, 1)
assert out['author'].node_mask.size() == (3, 1)
out = explanation.get_complement_subgraph()
assert out['paper'].node_mask.size() == (1, 1)
assert out['author'].node_mask.size() == (1, 1)
def test_edge_mask():
explanation = HeteroExplanation()
explanation['paper'].num_nodes = 4
explanation['author'].num_nodes = 4
explanation['paper', 'author'].edge_index = torch.tensor([
[0, 1, 2, 3],
[0, 1, 2, 3],
])
explanation['paper', 'author'].edge_mask = torch.tensor([1., 0., 1., 1.])
out = explanation.get_explanation_subgraph()
assert out['paper'].num_nodes == 4
assert out['author'].num_nodes == 4
assert out['paper', 'author'].edge_mask.size() == (3, )
assert torch.equal(out['paper', 'author'].edge_index,
torch.tensor([[0, 2, 3], [0, 2, 3]]))
out = explanation.get_complement_subgraph()
assert out['paper'].num_nodes == 4
assert out['author'].num_nodes == 4
assert out['paper', 'author'].edge_mask.size() == (1, )
assert torch.equal(out['paper', 'author'].edge_index,
torch.tensor([[1], [1]]))
@withPackage('matplotlib')
@pytest.mark.parametrize('top_k', [2, None])
@pytest.mark.parametrize('node_mask_type', [None, 'attributes'])
def test_visualize_feature_importance(
top_k,
node_mask_type,
tmp_path,
hetero_data,
):
explanation = create_random_explanation(
hetero_data,
node_mask_type=node_mask_type,
)
path = osp.join(tmp_path, 'feature_importance.png')
if node_mask_type is None:
with pytest.raises(KeyError, match="Tried to collect 'node_mask'"):
explanation.visualize_feature_importance(path, top_k=top_k)
else:
explanation.visualize_feature_importance(path, top_k=top_k)
assert osp.exists(path)
|