File: test_cache.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (78 lines) | stat: -rw-r--r-- 2,061 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
from torch import Tensor

from torch_geometric.data import Data
from torch_geometric.loader import CachedLoader, NeighborLoader
from torch_geometric.testing import withDevice, withPackage


@withDevice
@withPackage('pyg_lib')
def test_cached_loader(device):
    x = torch.randn(14, 16)
    edge_index = torch.tensor([
        [2, 3, 4, 5, 7, 7, 10, 11, 12, 13],
        [0, 1, 2, 3, 2, 3, 7, 7, 7, 7],
    ])

    loader = NeighborLoader(
        Data(x=x, edge_index=edge_index),
        num_neighbors=[2],
        batch_size=10,
        shuffle=False,
    )
    cached_loader = CachedLoader(loader, device=device)

    assert len(cached_loader) == len(loader)
    assert len(cached_loader._cache) == 0

    cache = []
    for i, batch in enumerate(cached_loader):
        assert len(cached_loader._cache) == i + 1
        assert batch.x.device == device
        assert batch.edge_index.device == device

        cache.append(batch)

    for i, batch in enumerate(cached_loader):
        assert batch == cache[i]

    cached_loader.clear()
    assert len(cached_loader._cache) == 0


@withDevice
@withPackage('pyg_lib')
def test_cached_loader_transform(device):
    x = torch.randn(14, 16)
    edge_index = torch.tensor([
        [2, 3, 4, 5, 7, 7, 10, 11, 12, 13],
        [0, 1, 2, 3, 2, 3, 7, 7, 7, 7],
    ])

    loader = NeighborLoader(
        Data(x=x, edge_index=edge_index),
        num_neighbors=[2],
        batch_size=10,
        shuffle=False,
    )
    cached_loader = CachedLoader(
        loader,
        device=device,
        transform=lambda batch: batch.edge_index,
    )

    assert len(cached_loader) == len(loader)
    assert len(cached_loader._cache) == 0

    cache = []
    for i, batch in enumerate(cached_loader):
        assert len(cached_loader._cache) == i + 1
        assert isinstance(batch, Tensor)
        assert batch.dim() == 2 and batch.size(0) == 2
        assert batch.device == device

        cache.append(batch)

    for i, batch in enumerate(cached_loader):
        assert torch.equal(batch, cache[i])