1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
import pytest
import torch
from torch_geometric.data import Data
from torch_geometric.loader import ClusterData, ClusterLoader
from torch_geometric.testing import onlyFullTest, onlyOnline, withMETIS
from torch_geometric.utils import sort_edge_index
@withMETIS
def test_cluster_gcn():
adj = torch.tensor([
[1, 1, 1, 0, 1, 0],
[1, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1],
])
x = torch.tensor([
[0.0, 0.0],
[1.0, 1.0],
[2.0, 2.0],
[3.0, 3.0],
[4.0, 4.0],
[5.0, 5.0],
])
edge_index = adj.nonzero(as_tuple=False).t()
edge_attr = torch.arange(edge_index.size(1))
n_id = torch.arange(6)
data = Data(x=x, n_id=n_id, edge_index=edge_index, edge_attr=edge_attr)
data.num_nodes = 6
cluster_data = ClusterData(data, num_parts=2, log=False)
partition = cluster_data._partition(
edge_index, cluster=torch.tensor([0, 1, 0, 1, 0, 1]))
assert partition.partptr.tolist() == [0, 3, 6]
assert partition.node_perm.tolist() == [0, 2, 4, 1, 3, 5]
assert partition.edge_perm.tolist() == [
0, 2, 3, 1, 8, 9, 10, 14, 15, 16, 4, 5, 6, 7, 11, 12, 13, 17, 18, 19
]
assert cluster_data.partition.partptr.tolist() == [0, 3, 6]
assert torch.equal(
cluster_data.partition.node_perm.sort()[0],
torch.arange(data.num_nodes),
)
assert torch.equal(
cluster_data.partition.edge_perm.sort()[0],
torch.arange(data.num_edges),
)
out = cluster_data[0]
expected = data.subgraph(out.n_id)
out.validate()
assert out.num_nodes == 3
assert out.n_id.size() == (3, )
assert torch.equal(out.x, expected.x)
tmp = sort_edge_index(expected.edge_index, expected.edge_attr)
assert torch.equal(out.edge_index, tmp[0])
assert torch.equal(out.edge_attr, tmp[1])
out = cluster_data[1]
out.validate()
assert out.num_nodes == 3
assert out.n_id.size() == (3, )
expected = data.subgraph(out.n_id)
assert torch.equal(out.x, expected.x)
tmp = sort_edge_index(expected.edge_index, expected.edge_attr)
assert torch.equal(out.edge_index, tmp[0])
assert torch.equal(out.edge_attr, tmp[1])
loader = ClusterLoader(cluster_data, batch_size=1)
iterator = iter(loader)
out = next(iterator)
out.validate()
assert out.num_nodes == 3
assert out.n_id.size() == (3, )
expected = data.subgraph(out.n_id)
assert torch.equal(out.x, expected.x)
tmp = sort_edge_index(expected.edge_index, expected.edge_attr)
assert torch.equal(out.edge_index, tmp[0])
assert torch.equal(out.edge_attr, tmp[1])
out = next(iterator)
out.validate()
assert out.num_nodes == 3
assert out.n_id.size() == (3, )
expected = data.subgraph(out.n_id)
assert torch.equal(out.x, expected.x)
tmp = sort_edge_index(expected.edge_index, expected.edge_attr)
assert torch.equal(out.edge_index, tmp[0])
assert torch.equal(out.edge_attr, tmp[1])
loader = ClusterLoader(cluster_data, batch_size=2, shuffle=False)
out = next(iter(loader))
out.validate()
assert out.num_nodes == 6
assert out.n_id.size() == (6, )
expected = data.subgraph(out.n_id)
assert torch.equal(out.x, expected.x)
tmp = sort_edge_index(expected.edge_index, expected.edge_attr)
assert torch.equal(out.edge_index, tmp[0])
assert torch.equal(out.edge_attr, tmp[1])
@withMETIS
def test_keep_inter_cluster_edges():
adj = torch.tensor([
[1, 1, 1, 0, 1, 0],
[1, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1],
])
x = torch.tensor([
[0.0, 0.0],
[1.0, 1.0],
[2.0, 2.0],
[3.0, 3.0],
[4.0, 4.0],
[5.0, 5.0],
])
edge_index = adj.nonzero(as_tuple=False).t()
edge_attr = torch.arange(edge_index.size(1))
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
data.num_nodes = 6
cluster_data = ClusterData(data, num_parts=2, log=False,
keep_inter_cluster_edges=True)
data = cluster_data[0]
assert data.edge_index[0].min() == 0
assert data.edge_index[0].max() == 2
assert data.edge_index[1].min() == 0
assert data.edge_index[1].max() > 2
assert data.edge_index.size(1) == data.edge_attr.size(0)
data = cluster_data[1]
assert data.edge_index[0].min() == 0
assert data.edge_index[0].max() == 2
assert data.edge_index[1].min() == 0
assert data.edge_index[1].max() > 2
assert data.edge_index.size(1) == data.edge_attr.size(0)
@withMETIS
@onlyOnline
@onlyFullTest
@pytest.mark.parametrize('sparse_format', ['csr', 'csc'])
def test_cluster_gcn_correctness(get_dataset, sparse_format):
dataset = get_dataset('Cora')
data = dataset[0].clone()
data.n_id = torch.arange(data.num_nodes)
cluster_data = ClusterData(
data,
num_parts=10,
log=False,
sparse_format=sparse_format,
)
loader = ClusterLoader(cluster_data, batch_size=3, shuffle=False)
for batch1 in loader:
batch1.validate()
batch2 = data.subgraph(batch1.n_id)
assert batch1.num_nodes == batch2.num_nodes
assert batch1.num_edges == batch2.num_edges
assert torch.equal(batch1.x, batch2.x)
assert torch.equal(
batch1.edge_index,
sort_edge_index(
batch2.edge_index,
sort_by_row=sparse_format == 'csr',
),
)
if __name__ == '__main__':
import argparse
from ogb.nodeproppred import PygNodePropPredDataset
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('--num_workers', type=int, default=0)
args = parser.parse_args()
data = PygNodePropPredDataset('ogbn-products', root='/tmp/ogb')[0]
loader = ClusterLoader(
ClusterData(data, num_parts=15_000, save_dir='/tmp/ogb/ogbn_products'),
batch_size=32,
shuffle=True,
num_workers=args.num_workers,
)
for batch in tqdm(loader):
pass
|