File: test_hgt_loader.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (218 lines) | stat: -rw-r--r-- 9,255 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy as np
import torch

from torch_geometric.data import HeteroData
from torch_geometric.loader import HGTLoader
from torch_geometric.nn import GraphConv, to_hetero
from torch_geometric.testing import (
    get_random_edge_index,
    onlyOnline,
    withPackage,
)
from torch_geometric.typing import SparseTensor
from torch_geometric.utils import k_hop_subgraph


def is_subset(subedge_index, edge_index, src_idx, dst_idx):
    num_nodes = int(edge_index.max()) + 1
    idx = num_nodes * edge_index[0] + edge_index[1]
    subidx = num_nodes * src_idx[subedge_index[0]] + dst_idx[subedge_index[1]]
    mask = torch.from_numpy(np.isin(subidx, idx))
    return int(mask.sum()) == mask.numel()


@withPackage('torch_sparse')
def test_hgt_loader():
    torch.manual_seed(12345)

    data = HeteroData()

    data['paper'].x = torch.arange(100)
    data['author'].x = torch.arange(100, 300)

    data['paper', 'paper'].edge_index = get_random_edge_index(100, 100, 500)
    data['paper', 'paper'].edge_attr = torch.arange(500)
    data['paper', 'author'].edge_index = get_random_edge_index(100, 200, 1000)
    data['paper', 'author'].edge_attr = torch.arange(500, 1500)
    data['author', 'paper'].edge_index = get_random_edge_index(200, 100, 1000)
    data['author', 'paper'].edge_attr = torch.arange(1500, 2500)

    r1, c1 = data['paper', 'paper'].edge_index
    r2, c2 = data['paper', 'author'].edge_index + torch.tensor([[0], [100]])
    r3, c3 = data['author', 'paper'].edge_index + torch.tensor([[100], [0]])
    full_adj = SparseTensor(
        row=torch.cat([r1, r2, r3]),
        col=torch.cat([c1, c2, c3]),
        value=torch.arange(2500),
    )

    batch_size = 20
    loader = HGTLoader(data, num_samples=[5] * 4, batch_size=batch_size,
                       input_nodes='paper')
    assert str(loader) == 'HGTLoader()'
    assert len(loader) == (100 + batch_size - 1) // batch_size

    for batch in loader:
        assert isinstance(batch, HeteroData)

        # Test node and types:
        assert set(batch.node_types) == {'paper', 'author'}
        assert set(batch.edge_types) == set(data.edge_types)

        assert len(batch['paper']) == 4
        assert batch['paper'].n_id.size() == (batch['paper'].num_nodes, )
        assert batch['paper'].x.size() == (40, )  # 20 + 4 * 5
        assert batch['paper'].input_id.numel() == batch_size
        assert batch['paper'].batch_size == batch_size
        assert batch['paper'].x.min() >= 0 and batch['paper'].x.max() < 100

        assert len(batch['author']) == 2
        assert batch['author'].n_id.size() == (batch['author'].num_nodes, )
        assert batch['author'].x.size() == (20, )  # 4 * 5
        assert batch['author'].x.min() >= 100 and batch['author'].x.max() < 300

        # Test edge type selection:
        assert set(batch.edge_types) == {('paper', 'to', 'paper'),
                                         ('paper', 'to', 'author'),
                                         ('author', 'to', 'paper')}

        assert len(batch['paper', 'paper']) == 3
        num_edges = batch['paper', 'paper'].num_edges
        assert batch['paper', 'paper'].e_id.size() == (num_edges, )
        row, col = batch['paper', 'paper'].edge_index
        value = batch['paper', 'paper'].edge_attr
        adj = full_adj[batch['paper'].x, batch['paper'].x]
        assert row.min() >= 0 and row.max() < 40
        assert col.min() >= 0 and col.max() < 40
        assert value.min() >= 0 and value.max() < 500
        assert adj.nnz() == row.size(0)
        assert torch.allclose(row.unique(), adj.storage.row().unique())
        assert torch.allclose(col.unique(), adj.storage.col().unique())
        assert torch.allclose(value.unique(), adj.storage.value().unique())

        assert is_subset(batch['paper', 'paper'].edge_index,
                         data['paper', 'paper'].edge_index, batch['paper'].x,
                         batch['paper'].x)

        assert len(batch['paper', 'author']) == 3
        num_edges = batch['paper', 'author'].num_edges
        assert batch['paper', 'author'].e_id.size() == (num_edges, )
        row, col = batch['paper', 'author'].edge_index
        value = batch['paper', 'author'].edge_attr
        adj = full_adj[batch['paper'].x, batch['author'].x]
        assert row.min() >= 0 and row.max() < 40
        assert col.min() >= 0 and col.max() < 20
        assert value.min() >= 500 and value.max() < 1500
        assert adj.nnz() == row.size(0)
        assert torch.allclose(row.unique(), adj.storage.row().unique())
        assert torch.allclose(col.unique(), adj.storage.col().unique())
        assert torch.allclose(value.unique(), adj.storage.value().unique())

        assert is_subset(batch['paper', 'author'].edge_index,
                         data['paper', 'author'].edge_index, batch['paper'].x,
                         batch['author'].x - 100)

        assert len(batch['author', 'paper']) == 3
        num_edges = batch['author', 'paper'].num_edges
        assert batch['author', 'paper'].e_id.size() == (num_edges, )
        row, col = batch['author', 'paper'].edge_index
        value = batch['author', 'paper'].edge_attr
        adj = full_adj[batch['author'].x, batch['paper'].x]
        assert row.min() >= 0 and row.max() < 20
        assert col.min() >= 0 and col.max() < 40
        assert value.min() >= 1500 and value.max() < 2500
        assert adj.nnz() == row.size(0)
        assert torch.allclose(row.unique(), adj.storage.row().unique())
        assert torch.allclose(col.unique(), adj.storage.col().unique())
        assert torch.allclose(value.unique(), adj.storage.value().unique())

        assert is_subset(batch['author', 'paper'].edge_index,
                         data['author', 'paper'].edge_index,
                         batch['author'].x - 100, batch['paper'].x)

        # Test for isolated nodes (there shouldn't exist any):
        n_id = torch.cat([batch['paper'].x, batch['author'].x])
        row, col, _ = full_adj[n_id, n_id].coo()
        assert torch.cat([row, col]).unique().numel() >= 59


@onlyOnline
@withPackage('torch_sparse')
def test_hgt_loader_on_cora(get_dataset):
    dataset = get_dataset(name='Cora')
    data = dataset[0]
    data.edge_weight = torch.rand(data.num_edges)

    hetero_data = HeteroData()
    hetero_data['paper'].x = data.x
    hetero_data['paper'].n_id = torch.arange(data.num_nodes)
    hetero_data['paper', 'paper'].edge_index = data.edge_index
    hetero_data['paper', 'paper'].edge_weight = data.edge_weight

    split_idx = torch.arange(5, 8)

    # Sample the complete two-hop neighborhood:
    loader = HGTLoader(hetero_data, num_samples=[data.num_nodes] * 2,
                       batch_size=split_idx.numel(),
                       input_nodes=('paper', split_idx))
    assert len(loader) == 1

    hetero_batch = next(iter(loader))
    batch_size = hetero_batch['paper'].batch_size

    n_id, _, _, e_mask = k_hop_subgraph(split_idx, num_hops=2,
                                        edge_index=data.edge_index,
                                        num_nodes=data.num_nodes)

    n_id = n_id.sort()[0]
    assert n_id.tolist() == hetero_batch['paper'].n_id.sort()[0].tolist()
    assert hetero_batch['paper', 'paper'].num_edges == int(e_mask.sum())

    class GNN(torch.nn.Module):
        def __init__(self, in_channels, hidden_channels, out_channels):
            super().__init__()
            self.conv1 = GraphConv(in_channels, hidden_channels)
            self.conv2 = GraphConv(hidden_channels, out_channels)

        def forward(self, x, edge_index, edge_weight):
            x = self.conv1(x, edge_index, edge_weight).relu()
            x = self.conv2(x, edge_index, edge_weight).relu()
            return x

    model = GNN(dataset.num_features, 16, dataset.num_classes)
    hetero_model = to_hetero(model, hetero_data.metadata())

    out1 = model(data.x, data.edge_index, data.edge_weight)[split_idx]
    out2 = hetero_model(hetero_batch.x_dict, hetero_batch.edge_index_dict,
                        hetero_batch.edge_weight_dict)['paper'][:batch_size]
    assert torch.allclose(out1, out2, atol=1e-6)


@withPackage('torch_sparse')
def test_hgt_loader_disconnected():
    data = HeteroData()

    data['paper'].x = torch.randn(10, 16)
    data['author'].x = torch.randn(10, 16)

    # Paper nodes are disconnected from author nodes:
    data['paper', 'paper'].edge_index = get_random_edge_index(10, 10, 15)
    data['paper', 'paper'].edge_attr = torch.randn(15, 8)
    data['author', 'author'].edge_index = get_random_edge_index(10, 10, 15)
    data['author', 'author'].edge_attr = torch.randn(15, 8)

    loader = HGTLoader(data, num_samples=[2], batch_size=2,
                       input_nodes='paper')

    for batch in loader:
        assert isinstance(batch, HeteroData)

        # Test node and edge types:
        assert set(batch.node_types) == set(data.node_types)
        assert set(batch.edge_types) == set(data.edge_types)

        assert batch['author'].num_nodes == 0
        assert batch['author'].x.size() == (0, 16)
        assert batch['author', 'author'].num_edges == 0
        assert batch['author', 'author'].edge_index.size() == (2, 0)
        assert batch['author', 'author'].edge_attr.size() == (0, 8)