File: test_config_store.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (163 lines) | stat: -rw-r--r-- 5,540 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from typing import Any, Dict, List, Tuple

from torch_geometric.config_store import (
    class_from_dataclass,
    clear_config_store,
    dataclass_from_class,
    fill_config_store,
    get_config_store,
    map_annotation,
    register,
    to_dataclass,
)
from torch_geometric.testing import minPython, withPackage
from torch_geometric.transforms import AddSelfLoops


def teardown_function():
    clear_config_store()


def test_to_dataclass():
    from torch_geometric.transforms import AddSelfLoops

    AddSelfLoopsConfig = to_dataclass(AddSelfLoops, with_target=True)
    assert AddSelfLoopsConfig.__name__ == 'AddSelfLoops'

    fields = AddSelfLoopsConfig.__dataclass_fields__

    assert fields['attr'].name == 'attr'
    assert fields['attr'].type == str
    assert fields['attr'].default == 'edge_weight'

    assert fields['fill_value'].name == 'fill_value'
    assert fields['fill_value'].type == Any
    assert fields['fill_value'].default == 1.0

    assert fields['_target_'].name == '_target_'
    assert fields['_target_'].type == str
    assert fields['_target_'].default == (
        'torch_geometric.transforms.add_self_loops.AddSelfLoops')

    cfg = AddSelfLoopsConfig()
    assert str(cfg) == ("AddSelfLoops(attr='edge_weight', fill_value=1.0, "
                        "_target_='torch_geometric.transforms.add_self_loops."
                        "AddSelfLoops')")


@minPython('3.10')
def test_map_annotation():
    mapping = {int: Any}
    assert map_annotation(dict[str, int], mapping) == dict[str, Any]
    assert map_annotation(Dict[str, float], mapping) == Dict[str, float]
    assert map_annotation(List[str], mapping) == List[str]
    assert map_annotation(List[int], mapping) == List[Any]
    assert map_annotation(Tuple[int], mapping) == Tuple[Any]
    assert map_annotation(dict[str, int], mapping) == dict[str, Any]
    assert map_annotation(dict[str, float], mapping) == dict[str, float]
    assert map_annotation(list[str], mapping) == list[str]
    assert map_annotation(list[int], mapping) == list[Any]
    assert map_annotation(tuple[int], mapping) == tuple[Any]


def test_register():
    register(AddSelfLoops, group='transform')
    assert 'transform' in get_config_store().repo

    AddSelfLoopsConfig = dataclass_from_class('AddSelfLoops')

    Cls = class_from_dataclass('AddSelfLoops')
    assert Cls == AddSelfLoops
    Cls = class_from_dataclass(AddSelfLoopsConfig)
    assert Cls == AddSelfLoops

    ConfigCls = dataclass_from_class('AddSelfLoops')
    assert ConfigCls == AddSelfLoopsConfig
    ConfigCls = dataclass_from_class(ConfigCls)
    assert ConfigCls == AddSelfLoopsConfig


def test_fill_config_store():
    fill_config_store()

    assert {
        'transform',
        'dataset',
        'model',
        'optimizer',
        'lr_scheduler',
    }.issubset(get_config_store().repo.keys())


@withPackage('hydra')
def test_hydra_config_store():
    import hydra
    from omegaconf import DictConfig

    fill_config_store()

    with hydra.initialize(config_path='.', version_base='1.1'):
        cfg = hydra.compose(config_name='my_config')

    assert len(cfg) == 4
    assert 'dataset' in cfg
    assert 'model' in cfg
    assert 'optimizer' in cfg
    assert 'lr_scheduler' in cfg

    # Check `cfg.dataset`:
    assert len(cfg.dataset) == 2
    assert cfg.dataset._target_.split('.')[-1] == 'KarateClub'

    # Check `cfg.dataset.transform`:
    assert isinstance(cfg.dataset.transform, DictConfig)
    assert len(cfg.dataset.transform) == 2
    assert 'NormalizeFeatures' in cfg.dataset.transform
    assert 'AddSelfLoops' in cfg.dataset.transform

    assert isinstance(cfg.dataset.transform.NormalizeFeatures, DictConfig)
    assert (cfg.dataset.transform.NormalizeFeatures._target_.split('.')[-1] ==
            'NormalizeFeatures')
    assert cfg.dataset.transform.NormalizeFeatures.attrs == ['x']

    assert isinstance(cfg.dataset.transform.AddSelfLoops, DictConfig)
    assert (cfg.dataset.transform.AddSelfLoops._target_.split('.')[-1] ==
            'AddSelfLoops')
    assert cfg.dataset.transform.AddSelfLoops.attr == 'edge_weight'
    assert cfg.dataset.transform.AddSelfLoops.fill_value == 1.0

    # Check `cfg.model`:
    assert len(cfg.model) == 12
    assert cfg.model._target_.split('.')[-1] == 'GCN'
    assert cfg.model.in_channels == 34
    assert cfg.model.out_channels == 4
    assert cfg.model.hidden_channels == 16
    assert cfg.model.num_layers == 2
    assert cfg.model.dropout == 0.0
    assert cfg.model.act == 'relu'
    assert cfg.model.norm is None
    assert cfg.model.norm_kwargs is None
    assert cfg.model.jk is None
    assert not cfg.model.act_first
    assert cfg.model.act_kwargs is None

    # Check `cfg.optimizer`:
    assert cfg.optimizer._target_.split('.')[-1] == 'Adam'
    assert cfg.optimizer.lr == 0.001
    assert cfg.optimizer.betas == [0.9, 0.999]
    assert cfg.optimizer.eps == 1e-08
    assert cfg.optimizer.weight_decay == 0
    assert not cfg.optimizer.amsgrad
    if hasattr(cfg.optimizer, 'maximize'):
        assert not cfg.optimizer.maximize

    # Check `cfg.lr_scheduler`:
    assert cfg.lr_scheduler._target_.split('.')[-1] == 'ReduceLROnPlateau'
    assert cfg.lr_scheduler.mode == 'min'
    assert cfg.lr_scheduler.factor == 0.1
    assert cfg.lr_scheduler.patience == 10
    assert cfg.lr_scheduler.threshold == 0.0001
    assert cfg.lr_scheduler.threshold_mode == 'rel'
    assert cfg.lr_scheduler.cooldown == 0
    assert cfg.lr_scheduler.min_lr == 0
    assert cfg.lr_scheduler.eps == 1e-08