File: test_index.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (571 lines) | stat: -rw-r--r-- 17,512 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import os.path as osp
from typing import List

import pytest
import torch
from torch import tensor

import torch_geometric.typing
from torch_geometric import Index
from torch_geometric.io import fs
from torch_geometric.testing import onlyCUDA, withCUDA
from torch_geometric.typing import INDEX_DTYPES

DTYPES = [pytest.param(dtype, id=str(dtype)[6:]) for dtype in INDEX_DTYPES]


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_basic(dtype, device):
    kwargs = dict(dtype=dtype, device=device, dim_size=3)
    index = Index([0, 1, 1, 2], **kwargs)
    index.validate()
    assert isinstance(index, Index)

    assert str(index).startswith('Index([0, 1, 1, 2], ')
    assert 'dim_size=3' in str(index)
    assert (f"device='{device}'" in str(index)) == index.is_cuda
    assert (f'dtype={dtype}' in str(index)) == (dtype != torch.long)

    assert index.dtype == dtype
    assert index.device == device
    assert index.dim_size == 3
    assert not index.is_sorted

    out = index.as_tensor()
    assert not isinstance(out, Index)
    assert out.dtype == dtype
    assert out.device == device

    out = index * 1
    assert not isinstance(out, Index)
    assert out.dtype == dtype
    assert out.device == device


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_identity(dtype, device):
    kwargs = dict(dtype=dtype, device=device, dim_size=3, is_sorted=True)
    index = Index([0, 1, 1, 2], **kwargs)

    out = Index(index)
    assert not isinstance(out.as_tensor(), Index)
    assert out.data_ptr() == index.data_ptr()
    assert out.dtype == index.dtype
    assert out.device == index.device
    assert out.dim_size == index.dim_size
    assert out.is_sorted == index.is_sorted

    out = Index(index, dim_size=4, is_sorted=False)
    assert out.dim_size == 4
    assert out.is_sorted == index.is_sorted


def test_validate():
    with pytest.raises(ValueError, match="unsupported data type"):
        Index([0.0, 1.0])
    with pytest.raises(ValueError, match="needs to be one-dimensional"):
        Index([[0], [1]])
    with pytest.raises(TypeError, match="invalid combination of arguments"):
        Index(tensor([0, 1]), torch.long)
    with pytest.raises(TypeError, match="invalid keyword arguments"):
        Index(tensor([0, 1]), dtype=torch.long)
    with pytest.raises(ValueError, match="contains negative indices"):
        Index([-1, 0]).validate()
    with pytest.raises(ValueError, match="than its registered size"):
        Index([0, 10], dim_size=2).validate()
    with pytest.raises(ValueError, match="not sorted"):
        Index([1, 0], is_sorted=True).validate()


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_fill_cache_(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], is_sorted=True, **kwargs)
    index.validate().fill_cache_()
    assert index.dim_size == 3
    assert index._indptr.dtype == dtype
    assert index._indptr.equal(tensor([0, 1, 3, 4], device=device))

    index = Index([1, 0, 2, 1], **kwargs)
    index.validate().fill_cache_()
    assert index.dim_size == 3
    assert index._indptr is None


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_dim_resize(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], is_sorted=True, **kwargs).fill_cache_()

    assert index.dim_size == 3
    assert index._indptr.equal(tensor([0, 1, 3, 4], device=device))

    out = index.dim_resize_(4)
    assert out.dim_size == 4
    assert out._indptr.equal(tensor([0, 1, 3, 4, 4], device=device))

    out = index.dim_resize_(3)
    assert out.dim_size == 3
    assert out._indptr.equal(tensor([0, 1, 3, 4], device=device))

    out = index.dim_resize_(None)
    assert out.dim_size is None
    assert out._indptr is None


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_clone(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], is_sorted=True, dim_size=3, **kwargs)

    out = index.clone()
    assert isinstance(out, Index)
    assert out.dtype == dtype
    assert out.device == device
    assert out.dim_size == 3
    assert out.is_sorted

    out = torch.clone(index)
    assert isinstance(out, Index)
    assert out.dtype == dtype
    assert out.device == device
    assert out.dim_size == 3
    assert out.is_sorted


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_to_function(dtype, device):
    kwargs = dict(dtype=dtype)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)
    index.fill_cache_()

    index = index.to(device)
    assert isinstance(index, Index)
    assert index.device == device
    assert index._indptr.dtype == dtype
    assert index._indptr.device == device

    out = index.cpu()
    assert isinstance(out, Index)
    assert out.device == torch.device('cpu')

    out = index.to(torch.int)
    assert out.dtype == torch.int
    if torch_geometric.typing.WITH_PT20:
        assert isinstance(out, Index)
        assert out._indptr.dtype == torch.int
    else:
        assert not isinstance(out, Index)

    out = index.to(torch.float)
    assert not isinstance(out, Index)
    assert out.dtype == torch.float

    out = index.long()
    assert isinstance(out, Index)
    assert out.dtype == torch.int64

    out = index.int()
    assert out.dtype == torch.int
    if torch_geometric.typing.WITH_PT20:
        assert isinstance(out, Index)
    else:
        assert not isinstance(out, Index)


@onlyCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_cpu_cuda(dtype):
    kwargs = dict(dtype=dtype)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)
    assert index.is_cpu

    out = index.cuda()
    assert isinstance(out, Index)
    assert out.is_cuda

    out = out.cpu()
    assert isinstance(out, Index)
    assert out.is_cpu


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_share_memory(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)
    index.fill_cache_()

    out = index.share_memory_()
    assert isinstance(out, Index)
    assert out.is_shared()
    assert out._data.is_shared()
    assert out._indptr.is_shared()
    assert out.data_ptr() == index.data_ptr()


@onlyCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_pin_memory(dtype):
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, dtype=dtype)
    assert not index.is_pinned()
    out = index.pin_memory()
    assert out.is_pinned()


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_contiguous(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)

    assert index.is_contiguous
    out = index.contiguous()
    assert isinstance(out, Index)
    assert out.is_contiguous


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_sort(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([1, 0, 2, 1], dim_size=3, **kwargs)

    index, _ = index.sort()
    assert isinstance(index, Index)
    assert index.equal(tensor([0, 1, 1, 2], device=device))
    assert index.dim_size == 3
    assert index.is_sorted

    out, perm = index.sort()
    assert isinstance(out, Index)
    assert out._data.data_ptr() == index._data.data_ptr()
    assert perm.equal(tensor([0, 1, 2, 3], device=device))
    assert out.dim_size == 3

    index, _ = index.sort(descending=True)
    assert isinstance(index, Index)
    assert index.equal(tensor([2, 1, 1, 0], device=device))
    assert index.dim_size == 3
    assert not index.is_sorted


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_sort_stable(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([1, 0, 2, 1], dim_size=3, **kwargs)

    index, perm = index.sort(stable=True)
    assert isinstance(index, Index)
    assert index.equal(tensor([0, 1, 1, 2], device=device))
    assert perm.equal(tensor([1, 0, 3, 2], device=device))
    assert index.dim_size == 3
    assert index.is_sorted

    out, perm = index.sort(stable=True)
    assert isinstance(out, Index)
    assert out._data.data_ptr() == index._data.data_ptr()
    assert perm.equal(tensor([0, 1, 2, 3], device=device))
    assert out.dim_size == 3

    index, perm = index.sort(descending=True, stable=True)
    assert isinstance(index, Index)
    assert index.equal(tensor([2, 1, 1, 0], device=device))
    assert perm.equal(tensor([3, 1, 2, 0], device=device))
    assert index.dim_size == 3
    assert not index.is_sorted


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_cat(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index1 = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)
    index2 = Index([1, 2, 2, 3], dim_size=4, is_sorted=True, **kwargs)
    index3 = Index([1, 2, 2, 3], **kwargs)

    out = torch.cat([index1, index2])
    assert out.equal(tensor([0, 1, 1, 2, 1, 2, 2, 3], device=device))
    assert out.size() == (8, )
    assert isinstance(out, Index)
    assert out.dim_size == 4
    assert not out.is_sorted

    assert out._cat_metadata.nnz == [4, 4]
    assert out._cat_metadata.dim_size == [3, 4]
    assert out._cat_metadata.is_sorted == [True, True]

    out = torch.cat([index1, index2, index3])
    assert out.size() == (12, )
    assert isinstance(out, Index)
    assert out.dim_size is None
    assert not out.is_sorted

    out = torch.cat([index1, index2.as_tensor()])
    assert out.size() == (8, )
    assert not isinstance(out, Index)

    inplace = torch.empty(8, dtype=dtype, device=device)
    out = torch.cat([index1, index2], out=inplace)
    assert out.equal(tensor([0, 1, 1, 2, 1, 2, 2, 3], device=device))
    assert out.data_ptr() == inplace.data_ptr()
    assert not isinstance(out, Index)
    assert not isinstance(inplace, Index)


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_flip(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)

    out = index.flip(0)
    assert isinstance(out, Index)
    assert out.equal(tensor([2, 1, 1, 0], device=device))
    assert out.dim_size == 3
    assert not out.is_sorted


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_index_select(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)

    i = tensor([1, 3], device=device)
    out = index.index_select(0, i)
    assert out.equal(tensor([1, 2], device=device))
    assert isinstance(out, Index)
    assert out.dim_size == 3
    assert not out.is_sorted

    inplace = torch.empty(2, dtype=dtype, device=device)
    out = torch.index_select(index, 0, i, out=inplace)
    assert out.equal(tensor([1, 2], device=device))
    assert out.data_ptr() == inplace.data_ptr()
    assert not isinstance(out, Index)
    assert not isinstance(inplace, Index)


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_narrow(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)

    out = index.narrow(0, start=1, length=2)
    assert isinstance(out, Index)
    assert out.equal(tensor([1, 1], device=device))
    assert out.dim_size == 3
    assert out.is_sorted


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_getitem(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)

    out = index[:]
    assert isinstance(out, Index)
    assert out._data.data_ptr() == index._data.data_ptr()
    assert out.equal(tensor([0, 1, 1, 2], device=device))
    assert out.dim_size == 3
    assert out.is_sorted

    out = index[tensor([False, True, False, True], device=device)]
    assert isinstance(out, Index)
    assert out.equal(tensor([1, 2], device=device))
    assert out.dim_size == 3
    assert out.is_sorted

    out = index[tensor([1, 3], device=device)]
    assert isinstance(out, Index)
    assert out.equal(tensor([1, 2], device=device))
    assert out.dim_size == 3
    assert not out.is_sorted

    out = index[1:3]
    assert isinstance(out, Index)
    assert out.equal(tensor([1, 1], device=device))
    assert out.dim_size == 3
    assert out.is_sorted

    out = index[...]
    assert isinstance(out, Index)
    assert out._data.data_ptr() == index._data.data_ptr()
    assert out.equal(tensor([0, 1, 1, 2], device=device))
    assert out.dim_size == 3
    assert out.is_sorted

    out = index[..., 1:3]
    assert isinstance(out, Index)
    assert out.equal(tensor([1, 1], device=device))
    assert out.dim_size == 3
    assert out.is_sorted

    out = index[None, 1:3]
    assert not isinstance(out, Index)
    assert out.equal(tensor([[1, 1]], device=device))

    out = index[1:3, None]
    assert not isinstance(out, Index)
    assert out.equal(tensor([[1], [1]], device=device))

    out = index[0]
    assert not isinstance(out, Index)
    assert out.equal(tensor(0, device=device))

    tmp = torch.randn(3, device=device)
    out = tmp[index]
    assert not isinstance(out, Index)
    assert out.equal(tmp[index.as_tensor()])


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_add(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)

    out = torch.add(index, 2, alpha=2)
    assert isinstance(out, Index)
    assert out.equal(tensor([4, 5, 5, 6], device=device))
    assert out.dim_size == 7
    assert out.is_sorted

    out = index + tensor([2], dtype=dtype, device=device)
    assert isinstance(out, Index)
    assert out.equal(tensor([2, 3, 3, 4], device=device))
    assert out.dim_size == 5
    assert out.is_sorted

    out = tensor([2], dtype=dtype, device=device) + index
    assert isinstance(out, Index)
    assert out.equal(tensor([2, 3, 3, 4], device=device))
    assert out.dim_size == 5
    assert out.is_sorted

    out = index.add(index)
    assert isinstance(out, Index)
    assert out.equal(tensor([0, 2, 2, 4], device=device))
    assert out.dim_size == 6
    assert not out.is_sorted

    index += 2
    assert isinstance(index, Index)
    assert index.equal(tensor([2, 3, 3, 4], device=device))
    assert index.dim_size == 5
    assert index.is_sorted

    with pytest.raises(RuntimeError, match="can't be cast"):
        index += 2.5


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_sub(dtype, device):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([4, 5, 5, 6], dim_size=7, is_sorted=True, **kwargs)

    out = torch.sub(index, 2, alpha=2)
    assert isinstance(out, Index)
    assert out.equal(tensor([0, 1, 1, 2], device=device))
    assert out.dim_size == 3
    assert out.is_sorted

    out = index - tensor([2], dtype=dtype, device=device)
    assert isinstance(out, Index)
    assert out.equal(tensor([2, 3, 3, 4], device=device))
    assert out.dim_size == 5
    assert out.is_sorted

    out = tensor([6], dtype=dtype, device=device) - index
    assert isinstance(out, Index)
    assert out.equal(tensor([2, 1, 1, 0], device=device))
    assert out.dim_size is None
    assert not out.is_sorted

    out = index.sub(index)
    assert isinstance(out, Index)
    assert out.equal(tensor([0, 0, 0, 0], device=device))
    assert out.dim_size is None
    assert not out.is_sorted

    index -= 2
    assert isinstance(index, Index)
    assert index.equal(tensor([2, 3, 3, 4], device=device))
    assert index.dim_size == 5
    assert not out.is_sorted

    with pytest.raises(RuntimeError, match="can't be cast"):
        index -= 2.5


def test_to_list():
    index = Index([0, 1, 1, 2])
    with pytest.raises(RuntimeError, match="supported for tensor subclasses"):
        index.tolist()


def test_numpy():
    index = Index([0, 1, 1, 2])
    with pytest.raises(RuntimeError, match="supported for tensor subclasses"):
        index.numpy()


@withCUDA
@pytest.mark.parametrize('dtype', DTYPES)
def test_save_and_load(dtype, device, tmp_path):
    kwargs = dict(dtype=dtype, device=device)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)
    index.fill_cache_()

    path = osp.join(tmp_path, 'edge_index.pt')
    torch.save(index, path)
    out = fs.torch_load(path)

    assert isinstance(out, Index)
    assert out.equal(index)
    assert out.dim_size == 3
    assert out.is_sorted
    assert out._indptr.equal(index._indptr)


def _collate_fn(indices: List[Index]) -> List[Index]:
    return indices


@pytest.mark.parametrize('dtype', DTYPES)
@pytest.mark.parametrize('num_workers', [0, 2])
@pytest.mark.parametrize('pin_memory', [False, True])
def test_data_loader(dtype, num_workers, pin_memory):
    kwargs = dict(dtype=dtype)
    index = Index([0, 1, 1, 2], dim_size=3, is_sorted=True, **kwargs)
    index.fill_cache_()

    loader = torch.utils.data.DataLoader(
        [index] * 4,
        batch_size=2,
        num_workers=num_workers,
        collate_fn=_collate_fn,
        pin_memory=pin_memory,
        drop_last=True,
    )

    assert len(loader) == 2
    for batch in loader:
        assert isinstance(batch, list)
        assert len(batch) == 2
        for index in batch:
            assert isinstance(index, Index)
            assert index.dtype == dtype
            assert index.is_shared() != (num_workers == 0) or pin_memory
            assert index._data.is_shared() != (num_workers == 0) or pin_memory