1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
import torch
from torch import tensor
from torch_geometric.data import HeteroData
from torch_geometric.transforms import AddMetaPaths, AddRandomMetaPaths
from torch_geometric.utils import coalesce
def generate_data() -> HeteroData:
data = HeteroData()
data['p'].x = torch.ones(5)
data['a'].x = torch.ones(6)
data['c'].x = torch.ones(3)
data['p', 'p'].edge_index = tensor([[0, 1, 2, 3], [1, 2, 4, 2]])
data['p', 'a'].edge_index = tensor([[0, 1, 2, 3, 4], [2, 2, 5, 2, 5]])
data['a', 'p'].edge_index = data['p', 'a'].edge_index.flip([0])
data['c', 'p'].edge_index = tensor([[0, 0, 1, 2, 2], [0, 1, 2, 3, 4]])
data['p', 'c'].edge_index = data['c', 'p'].edge_index.flip([0])
return data
def test_add_metapaths() -> None:
data = generate_data()
# Test transform options:
metapaths = [[('p', 'c'), ('c', 'p')]]
transform = AddMetaPaths(metapaths)
assert str(transform) == 'AddMetaPaths()'
meta1 = transform(data)
transform = AddMetaPaths(metapaths, drop_orig_edge_types=True)
assert str(transform) == 'AddMetaPaths()'
meta2 = transform(data)
transform = AddMetaPaths(metapaths, drop_orig_edge_types=True,
keep_same_node_type=True)
assert str(transform) == 'AddMetaPaths()'
meta3 = transform(data)
transform = AddMetaPaths(metapaths, drop_orig_edge_types=True,
keep_same_node_type=True,
drop_unconnected_node_types=True)
assert str(transform) == 'AddMetaPaths()'
meta4 = transform(data)
assert meta1['metapath_0'].edge_index.size() == (2, 9)
assert meta2['metapath_0'].edge_index.size() == (2, 9)
assert meta3['metapath_0'].edge_index.size() == (2, 9)
assert meta4['metapath_0'].edge_index.size() == (2, 9)
assert all([i in meta1.edge_types for i in data.edge_types])
assert meta2.edge_types == [('p', 'metapath_0', 'p')]
assert meta3.edge_types == [('p', 'to', 'p'), ('p', 'metapath_0', 'p')]
assert meta4.edge_types == [('p', 'to', 'p'), ('p', 'metapath_0', 'p')]
assert meta3.node_types == ['p', 'a', 'c']
assert meta4.node_types == ['p']
# Test 4-hop metapath:
metapaths = [
[('a', 'p'), ('p', 'c')],
[('a', 'p'), ('p', 'c'), ('c', 'p'), ('p', 'a')],
]
transform = AddMetaPaths(metapaths)
meta = transform(data)
new_edge_types = [('a', 'metapath_0', 'c'), ('a', 'metapath_1', 'a')]
assert meta['metapath_0'].edge_index.size() == (2, 4)
assert meta['metapath_1'].edge_index.size() == (2, 4)
# Test `metapath_dict` information:
assert list(meta.metapath_dict.values()) == metapaths
assert list(meta.metapath_dict.keys()) == new_edge_types
def test_add_metapaths_max_sample() -> None:
torch.manual_seed(12345)
data = generate_data()
metapaths = [[('p', 'c'), ('c', 'p')]]
transform = AddMetaPaths(metapaths, max_sample=1)
meta = transform(data)
assert meta['metapath_0'].edge_index.size(1) < 9
def test_add_weighted_metapaths() -> None:
torch.manual_seed(12345)
data = HeteroData()
data['a'].num_nodes = 2
data['b'].num_nodes = 3
data['c'].num_nodes = 2
data['d'].num_nodes = 2
data['a', 'b'].edge_index = tensor([[0, 1, 1], [0, 1, 2]])
data['b', 'a'].edge_index = data['a', 'b'].edge_index.flip([0])
data['b', 'c'].edge_index = tensor([[0, 1, 2], [0, 1, 1]])
data['c', 'b'].edge_index = data['b', 'c'].edge_index.flip([0])
data['c', 'd'].edge_index = tensor([[0, 1], [0, 0]])
data['d', 'c'].edge_index = data['c', 'd'].edge_index.flip([0])
metapaths = [
[('a', 'b'), ('b', 'c')],
[('a', 'b'), ('b', 'c'), ('c', 'd')],
[('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'c'), ('c', 'b'),
('b', 'a')],
]
transform = AddMetaPaths(metapaths, weighted=True)
out = transform(data)
# Make sure manually added metapaths compute the correct number of edges:
edge_index = out['a', 'a'].edge_index
edge_weight = out['a', 'a'].edge_weight
edge_index, edge_weight = coalesce(edge_index, edge_weight)
assert edge_index.tolist() == [[0, 0, 1, 1], [0, 1, 0, 1]]
assert edge_weight.tolist() == [1, 2, 2, 4]
edge_index = out['a', 'c'].edge_index
edge_weight = out['a', 'c'].edge_weight
edge_index, edge_weight = coalesce(edge_index, edge_weight)
assert edge_index.tolist() == [[0, 1], [0, 1]]
assert edge_weight.tolist() == [1, 2]
edge_index = out['a', 'd'].edge_index
edge_weight = out['a', 'd'].edge_weight
edge_index, edge_weight = coalesce(edge_index, edge_weight)
assert edge_index.tolist() == [[0, 1], [0, 0]]
assert edge_weight.tolist() == [1, 2]
# Compute intra-table metapaths efficiently:
metapaths = [[('a', 'b'), ('b', 'c'), ('c', 'd')]]
out = AddMetaPaths(metapaths, weighted=True)(data)
out['d', 'a'].edge_index = out['a', 'd'].edge_index.flip([0])
out['d', 'a'].edge_weight = out['a', 'd'].edge_weight
metapaths = [[('a', 'd'), ('d', 'a')]]
out = AddMetaPaths(metapaths, weighted=True)(out)
edge_index = out['a', 'a'].edge_index
edge_weight = out['a', 'a'].edge_weight
edge_index, edge_weight = coalesce(edge_index, edge_weight)
assert edge_index.tolist() == [[0, 0, 1, 1], [0, 1, 0, 1]]
assert edge_weight.tolist() == [1, 2, 2, 4]
def test_add_random_metapaths() -> None:
data = generate_data()
# Test transform options:
metapaths = [[('p', 'c'), ('c', 'p')]]
torch.manual_seed(12345)
transform = AddRandomMetaPaths(metapaths)
assert str(transform) == ('AddRandomMetaPaths(sample_ratio=1.0, '
'walks_per_node=[1])')
meta1 = transform(data)
transform = AddRandomMetaPaths(metapaths, drop_orig_edge_types=True)
assert str(transform) == ('AddRandomMetaPaths(sample_ratio=1.0, '
'walks_per_node=[1])')
meta2 = transform(data)
transform = AddRandomMetaPaths(metapaths, drop_orig_edge_types=True,
keep_same_node_type=True)
assert str(transform) == ('AddRandomMetaPaths(sample_ratio=1.0, '
'walks_per_node=[1])')
meta3 = transform(data)
transform = AddRandomMetaPaths(metapaths, drop_orig_edge_types=True,
keep_same_node_type=True,
drop_unconnected_node_types=True)
assert str(transform) == ('AddRandomMetaPaths(sample_ratio=1.0, '
'walks_per_node=[1])')
meta4 = transform(data)
transform = AddRandomMetaPaths(metapaths, sample_ratio=0.8,
drop_orig_edge_types=True,
keep_same_node_type=True,
drop_unconnected_node_types=True)
assert str(transform) == ('AddRandomMetaPaths(sample_ratio=0.8, '
'walks_per_node=[1])')
meta5 = transform(data)
transform = AddRandomMetaPaths(metapaths, walks_per_node=5,
drop_orig_edge_types=True,
keep_same_node_type=True,
drop_unconnected_node_types=True)
assert str(transform) == ('AddRandomMetaPaths(sample_ratio=1.0, '
'walks_per_node=[5])')
meta6 = transform(data)
assert meta1['metapath_0'].edge_index.size() == (2, 5)
assert meta2['metapath_0'].edge_index.size() == (2, 5)
assert meta3['metapath_0'].edge_index.size() == (2, 5)
assert meta4['metapath_0'].edge_index.size() == (2, 5)
assert meta5['metapath_0'].edge_index.size() == (2, 4)
assert meta6['metapath_0'].edge_index.size() == (2, 7)
assert all([i in meta1.edge_types for i in data.edge_types])
assert meta2.edge_types == [('p', 'metapath_0', 'p')]
assert meta3.edge_types == [('p', 'to', 'p'), ('p', 'metapath_0', 'p')]
assert meta4.edge_types == [('p', 'to', 'p'), ('p', 'metapath_0', 'p')]
assert meta3.node_types == ['p', 'a', 'c']
assert meta4.node_types == ['p']
# Test 4-hop metapath:
metapaths = [
[('a', 'p'), ('p', 'c')],
[('a', 'p'), ('p', 'c'), ('c', 'p'), ('p', 'a')],
]
transform = AddRandomMetaPaths(metapaths)
assert str(transform) == ('AddRandomMetaPaths(sample_ratio=1.0, '
'walks_per_node=[1, 1])')
meta1 = transform(data)
new_edge_types = [('a', 'metapath_0', 'c'), ('a', 'metapath_1', 'a')]
assert meta1['metapath_0'].edge_index.size() == (2, 2)
assert meta1['metapath_1'].edge_index.size() == (2, 2)
# Test `metapath_dict` information:
assert list(meta1.metapath_dict.values()) == metapaths
assert list(meta1.metapath_dict.keys()) == new_edge_types
transform = AddRandomMetaPaths(metapaths, walks_per_node=[2, 5])
assert str(transform) == ('AddRandomMetaPaths(sample_ratio=1.0, '
'walks_per_node=[2, 5])')
meta2 = transform(data)
new_edge_types = [('a', 'metapath_0', 'c'), ('a', 'metapath_1', 'a')]
assert meta2['metapath_0'].edge_index.size() == (2, 2)
assert meta2['metapath_1'].edge_index.size() == (2, 3)
|