File: test_mask_transform.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (92 lines) | stat: -rw-r--r-- 3,146 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch

from torch_geometric.data import Data, HeteroData
from torch_geometric.transforms import IndexToMask, MaskToIndex


def test_index_to_mask():
    assert str(IndexToMask()) == ('IndexToMask(attrs=None, sizes=None, '
                                  'replace=False)')

    edge_index = torch.tensor([[0, 1, 1, 2, 2, 3, 3, 4],
                               [1, 0, 2, 1, 3, 2, 4, 3]])
    train_index = torch.arange(0, 3)
    test_index = torch.arange(3, 5)
    data = Data(edge_index=edge_index, train_index=train_index,
                test_index=test_index, num_nodes=5)

    out = IndexToMask(replace=True)(data)
    assert len(out) == len(data)
    assert out.train_mask.tolist() == [True, True, True, False, False]
    assert out.test_mask.tolist() == [False, False, False, True, True]

    out = IndexToMask(replace=False)(data)
    assert len(out) == len(data) + 2

    out = IndexToMask(sizes=6, replace=True)(data)
    assert out.train_mask.tolist() == [True, True, True, False, False, False]
    assert out.test_mask.tolist() == [False, False, False, True, True, False]

    out = IndexToMask(attrs='train_index')(data)
    assert len(out) == len(data) + 1
    assert 'train_index' in out
    assert 'train_mask' in out
    assert 'test_index' in out
    assert 'test_mask' not in out


def test_mask_to_index():
    assert str(MaskToIndex()) == 'MaskToIndex(attrs=None, replace=False)'

    train_mask = torch.tensor([True, True, True, False, False])
    test_mask = torch.tensor([False, False, False, True, True])
    data = Data(train_mask=train_mask, test_mask=test_mask)

    out = MaskToIndex(replace=True)(data)
    assert len(out) == len(data)
    assert out.train_index.tolist() == [0, 1, 2]
    assert out.test_index.tolist() == [3, 4]

    out = MaskToIndex(replace=False)(data)
    assert len(out) == len(data) + 2

    out = MaskToIndex(attrs='train_mask')(data)
    assert len(out) == len(data) + 1
    assert 'train_mask' in out
    assert 'train_index' in out
    assert 'test_mask' in out
    assert 'test_index' not in out


def test_hetero_index_to_mask():
    data = HeteroData()
    data['u'].train_index = torch.arange(0, 3)
    data['u'].test_index = torch.arange(3, 5)
    data['u'].num_nodes = 5

    data['v'].train_index = torch.arange(0, 3)
    data['v'].test_index = torch.arange(3, 5)
    data['v'].num_nodes = 5

    out = IndexToMask()(data)
    assert len(out) == len(data) + 2
    assert 'train_mask' in out['u']
    assert 'test_mask' in out['u']
    assert 'train_mask' in out['v']
    assert 'test_mask' in out['v']


def test_hetero_mask_to_index():
    data = HeteroData()
    data['u'].train_mask = torch.tensor([True, True, True, False, False])
    data['u'].test_mask = torch.tensor([False, False, False, True, True])

    data['v'].train_mask = torch.tensor([True, True, True, False, False])
    data['v'].test_mask = torch.tensor([False, False, False, True, True])

    out = MaskToIndex()(data)
    assert len(out) == len(data) + 2
    assert 'train_index' in out['u']
    assert 'test_index' in out['u']
    assert 'train_index' in out['v']
    assert 'test_index' in out['v']