File: test_random_link_split.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (338 lines) | stat: -rw-r--r-- 13,951 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import pytest
import torch

from torch_geometric.data import Data, HeteroData
from torch_geometric.testing import (
    get_random_edge_index,
    onlyFullTest,
    onlyOnline,
)
from torch_geometric.transforms import RandomLinkSplit, ToSparseTensor
from torch_geometric.utils import is_undirected, to_undirected


def test_random_link_split():
    assert str(RandomLinkSplit()) == ('RandomLinkSplit('
                                      'num_val=0.1, num_test=0.2)')

    edge_index = torch.tensor([[0, 1, 1, 2, 2, 3, 3, 4, 4, 5],
                               [1, 0, 2, 1, 3, 2, 4, 3, 5, 4]])
    edge_attr = torch.randn(edge_index.size(1), 3)

    data = Data(edge_index=edge_index, edge_attr=edge_attr, num_nodes=100)

    # No test split:
    transform = RandomLinkSplit(num_val=2, num_test=0, is_undirected=True)
    train_data, val_data, test_data = transform(data)

    assert len(train_data) == 5
    assert train_data.num_nodes == 100
    assert train_data.edge_index.size() == (2, 6)
    assert train_data.edge_attr.size() == (6, 3)
    assert train_data.edge_label_index.size(1) == 6
    assert train_data.edge_label.size(0) == 6

    assert len(val_data) == 5
    assert val_data.num_nodes == 100
    assert val_data.edge_index.size() == (2, 6)
    assert val_data.edge_attr.size() == (6, 3)
    assert val_data.edge_label_index.size(1) == 4
    assert val_data.edge_label.size(0) == 4

    assert len(test_data) == 5
    assert test_data.num_nodes == 100
    assert test_data.edge_index.size() == (2, 10)
    assert test_data.edge_attr.size() == (10, 3)
    assert test_data.edge_label_index.size() == (2, 0)
    assert test_data.edge_label.size() == (0, )

    # Percentage split:
    transform = RandomLinkSplit(num_val=0.2, num_test=0.2,
                                neg_sampling_ratio=2.0, is_undirected=False)
    train_data, val_data, test_data = transform(data)

    assert len(train_data) == 5
    assert train_data.num_nodes == 100
    assert train_data.edge_index.size() == (2, 6)
    assert train_data.edge_attr.size() == (6, 3)
    assert train_data.edge_label_index.size(1) == 18
    assert train_data.edge_label.size(0) == 18

    assert len(val_data) == 5
    assert val_data.num_nodes == 100
    assert val_data.edge_index.size() == (2, 6)
    assert val_data.edge_attr.size() == (6, 3)
    assert val_data.edge_label_index.size(1) == 6
    assert val_data.edge_label.size(0) == 6

    assert len(test_data) == 5
    assert test_data.num_nodes == 100
    assert test_data.edge_index.size() == (2, 8)
    assert test_data.edge_attr.size() == (8, 3)
    assert test_data.edge_label_index.size(1) == 6
    assert test_data.edge_label.size(0) == 6

    # Disjoint training split:
    transform = RandomLinkSplit(num_val=0.2, num_test=0.2, is_undirected=False,
                                disjoint_train_ratio=0.5)
    train_data, val_data, test_data = transform(data)

    assert len(train_data) == 5
    assert train_data.num_nodes == 100
    assert train_data.edge_index.size() == (2, 3)
    assert train_data.edge_attr.size() == (3, 3)
    assert train_data.edge_label_index.size(1) == 6
    assert train_data.edge_label.size(0) == 6


def test_random_link_split_with_to_sparse_tensor():
    edge_index = torch.tensor([[0, 1, 1, 2, 2, 3, 3, 4, 4, 5],
                               [1, 0, 2, 1, 3, 2, 4, 3, 5, 4]])
    data = Data(edge_index=edge_index, num_nodes=6)

    transform = RandomLinkSplit(num_val=2, num_test=2, neg_sampling_ratio=0.0)
    train_data1, _, _ = transform(data)
    assert train_data1.edge_index.size(1) == train_data1.edge_label.size(0)

    train_data2 = ToSparseTensor()(train_data1)
    assert train_data1.edge_label.equal(train_data2.edge_label)
    assert train_data1.edge_label_index.equal(train_data2.edge_label_index)


def test_random_link_split_with_label():
    edge_index = torch.tensor([[0, 1, 1, 2, 2, 3, 3, 4, 4, 5],
                               [1, 0, 2, 1, 3, 2, 4, 3, 5, 4]])
    edge_label = torch.tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

    data = Data(edge_index=edge_index, edge_label=edge_label, num_nodes=6)

    transform = RandomLinkSplit(num_val=0.2, num_test=0.2,
                                neg_sampling_ratio=0.0)
    train_data, _, _ = transform(data)
    assert len(train_data) == 4
    assert train_data.num_nodes == 6
    assert train_data.edge_index.size() == (2, 6)
    assert train_data.edge_label_index.size() == (2, 6)
    assert train_data.edge_label.size() == (6, )
    assert train_data.edge_label.min() == 0
    assert train_data.edge_label.max() == 1

    transform = RandomLinkSplit(num_val=0.2, num_test=0.2,
                                neg_sampling_ratio=1.0)
    train_data, _, _ = transform(data)
    assert len(train_data) == 4
    assert train_data.num_nodes == 6
    assert train_data.edge_index.size() == (2, 6)
    assert train_data.edge_label_index.size() == (2, 12)
    assert train_data.edge_label.size() == (12, )
    assert train_data.edge_label.min() == 0
    assert train_data.edge_label.max() == 2
    assert train_data.edge_label[6:].sum() == 0


def test_random_link_split_increment_label():
    edge_index = torch.tensor([[0, 1, 1, 2, 2, 3, 3, 4, 4, 5],
                               [1, 0, 2, 1, 3, 2, 4, 3, 5, 4]])
    edge_label = torch.tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

    data = Data(edge_index=edge_index, edge_label=edge_label, num_nodes=6)

    transform = RandomLinkSplit(num_val=0, num_test=0, neg_sampling_ratio=0.0)
    train_data, _, _ = transform(data)
    assert train_data.edge_label.numel() == edge_index.size(1)
    assert train_data.edge_label.min() == 0
    assert train_data.edge_label.max() == 1

    transform = RandomLinkSplit(num_val=0, num_test=0, neg_sampling_ratio=1.0)
    train_data, _, _ = transform(data)
    assert train_data.edge_label.numel() == 2 * edge_index.size(1)
    assert train_data.edge_label.min() == 0
    assert train_data.edge_label.max() == 2
    assert train_data.edge_label[edge_index.size(1):].sum() == 0


def test_random_link_split_on_hetero_data():
    data = HeteroData()

    data['p'].x = torch.arange(100)
    data['a'].x = torch.arange(100, 300)

    data['p', 'p'].edge_index = get_random_edge_index(100, 100, 500)
    data['p', 'p'].edge_index = to_undirected(data['p', 'p'].edge_index)
    data['p', 'p'].edge_attr = torch.arange(data['p', 'p'].num_edges)
    data['p', 'a'].edge_index = get_random_edge_index(100, 200, 1000)
    data['p', 'a'].edge_attr = torch.arange(500, 1500)
    data['a', 'p'].edge_index = data['p', 'a'].edge_index.flip([0])
    data['a', 'p'].edge_attr = torch.arange(1500, 2500)

    transform = RandomLinkSplit(num_val=0.2, num_test=0.2, is_undirected=True,
                                edge_types=('p', 'p'))
    train_data, val_data, test_data = transform(data)

    assert len(train_data['p']) == 1
    assert len(train_data['a']) == 1
    assert len(train_data['p', 'p']) == 4
    assert len(train_data['p', 'a']) == 2
    assert len(train_data['a', 'p']) == 2

    assert is_undirected(train_data['p', 'p'].edge_index,
                         train_data['p', 'p'].edge_attr)
    assert is_undirected(val_data['p', 'p'].edge_index,
                         val_data['p', 'p'].edge_attr)
    assert is_undirected(test_data['p', 'p'].edge_index,
                         test_data['p', 'p'].edge_attr)

    transform = RandomLinkSplit(num_val=0.2, num_test=0.2,
                                edge_types=('p', 'a'),
                                rev_edge_types=('a', 'p'))
    train_data, val_data, test_data = transform(data)

    assert len(train_data['p']) == 1
    assert len(train_data['a']) == 1
    assert len(train_data['p', 'p']) == 2
    assert len(train_data['p', 'a']) == 4
    assert len(train_data['a', 'p']) == 2

    assert train_data['p', 'a'].edge_index.size() == (2, 600)
    assert train_data['p', 'a'].edge_attr.size() == (600, )
    assert train_data['p', 'a'].edge_attr.min() >= 500
    assert train_data['p', 'a'].edge_attr.max() <= 1500
    assert train_data['a', 'p'].edge_index.size() == (2, 600)
    assert train_data['a', 'p'].edge_attr.size() == (600, )
    assert train_data['a', 'p'].edge_attr.min() >= 500
    assert train_data['a', 'p'].edge_attr.max() <= 1500
    assert train_data['p', 'a'].edge_label_index.size() == (2, 1200)
    assert train_data['p', 'a'].edge_label.size() == (1200, )

    assert val_data['p', 'a'].edge_index.size() == (2, 600)
    assert val_data['p', 'a'].edge_attr.size() == (600, )
    assert val_data['p', 'a'].edge_attr.min() >= 500
    assert val_data['p', 'a'].edge_attr.max() <= 1500
    assert val_data['a', 'p'].edge_index.size() == (2, 600)
    assert val_data['a', 'p'].edge_attr.size() == (600, )
    assert val_data['a', 'p'].edge_attr.min() >= 500
    assert val_data['a', 'p'].edge_attr.max() <= 1500
    assert val_data['p', 'a'].edge_label_index.size() == (2, 400)
    assert val_data['p', 'a'].edge_label.size() == (400, )

    assert test_data['p', 'a'].edge_index.size() == (2, 800)
    assert test_data['p', 'a'].edge_attr.size() == (800, )
    assert test_data['p', 'a'].edge_attr.min() >= 500
    assert test_data['p', 'a'].edge_attr.max() <= 1500
    assert test_data['a', 'p'].edge_index.size() == (2, 800)
    assert test_data['a', 'p'].edge_attr.size() == (800, )
    assert test_data['a', 'p'].edge_attr.min() >= 500
    assert test_data['a', 'p'].edge_attr.max() <= 1500
    assert test_data['p', 'a'].edge_label_index.size() == (2, 400)
    assert test_data['p', 'a'].edge_label.size() == (400, )

    transform = RandomLinkSplit(num_val=0.2, num_test=0.2, is_undirected=True,
                                edge_types=[('p', 'p'), ('p', 'a')],
                                rev_edge_types=[None, ('a', 'p')])
    train_data, val_data, test_data = transform(data)

    assert len(train_data['p']) == 1
    assert len(train_data['a']) == 1
    assert len(train_data['p', 'p']) == 4
    assert len(train_data['p', 'a']) == 4
    assert len(train_data['a', 'p']) == 2

    assert is_undirected(train_data['p', 'p'].edge_index,
                         train_data['p', 'p'].edge_attr)
    assert train_data['p', 'a'].edge_index.size() == (2, 600)
    assert train_data['a', 'p'].edge_index.size() == (2, 600)

    # No reverse edge types specified:
    transform = RandomLinkSplit(edge_types=[('p', 'p'), ('p', 'a')])
    train_data, val_data, test_data = transform(data)
    assert train_data['p', 'p'].num_edges < data['p', 'p'].num_edges
    assert train_data['p', 'a'].num_edges < data['p', 'a'].num_edges
    assert train_data['a', 'p'].num_edges == data['a', 'p'].num_edges


def test_random_link_split_on_undirected_hetero_data():
    data = HeteroData()
    data['p'].x = torch.arange(100)
    data['p', 'p'].edge_index = get_random_edge_index(100, 100, 500)
    data['p', 'p'].edge_index = to_undirected(data['p', 'p'].edge_index)

    transform = RandomLinkSplit(is_undirected=True, edge_types=('p', 'p'))
    train_data, val_data, test_data = transform(data)
    assert train_data['p', 'p'].is_undirected()

    transform = RandomLinkSplit(is_undirected=True, edge_types=('p', 'p'),
                                rev_edge_types=('p', 'p'))
    train_data, val_data, test_data = transform(data)
    assert train_data['p', 'p'].is_undirected()

    transform = RandomLinkSplit(is_undirected=True, edge_types=('p', 'p'),
                                rev_edge_types=('p', 'p'))
    train_data, val_data, test_data = transform(data)
    assert train_data['p', 'p'].is_undirected()


def test_random_link_split_insufficient_negative_edges():
    edge_index = torch.tensor([[0, 0, 1, 1, 2, 2], [1, 3, 0, 2, 0, 1]])
    data = Data(edge_index=edge_index, num_nodes=4)

    transform = RandomLinkSplit(num_val=0.34, num_test=0.34,
                                is_undirected=False, neg_sampling_ratio=2,
                                split_labels=True)

    with pytest.warns(UserWarning, match="not enough negative edges"):
        train_data, val_data, test_data = transform(data)

    assert train_data.neg_edge_label_index.size() == (2, 2)
    assert val_data.neg_edge_label_index.size() == (2, 2)
    assert test_data.neg_edge_label_index.size() == (2, 2)


def test_random_link_split_non_contiguous():
    edge_index = get_random_edge_index(40, 40, num_edges=150)
    edge_index = edge_index[:, :100]
    assert not edge_index.is_contiguous()

    data = Data(edge_index=edge_index, num_nodes=40)
    transform = RandomLinkSplit(num_val=0.2, num_test=0.2)
    train_data, val_data, test_data = transform(data)
    assert train_data.num_edges == 60
    assert train_data.edge_index.is_contiguous()

    data = HeteroData()
    data['p'].num_nodes = 40
    data['p', 'p'].edge_index = edge_index
    transform = RandomLinkSplit(num_val=0.2, num_test=0.2,
                                edge_types=('p', 'p'))
    train_data, val_data, test_data = transform(data)
    assert train_data['p', 'p'].num_edges == 60
    assert train_data['p', 'p'].edge_index.is_contiguous()


@onlyOnline
@onlyFullTest
def test_random_link_split_on_dataset(get_dataset):
    dataset = get_dataset(name='MUTAG')

    dataset.transform = RandomLinkSplit(
        num_val=0.1,
        num_test=0.1,
        disjoint_train_ratio=0.3,
        add_negative_train_samples=False,
    )

    train_dataset, val_dataset, test_dataset = zip(*dataset)
    assert len(train_dataset) == len(dataset)
    assert len(val_dataset) == len(dataset)
    assert len(test_dataset) == len(dataset)

    assert isinstance(train_dataset[0], Data)
    assert train_dataset[0].edge_label.min() == 1.0
    assert train_dataset[0].edge_label.max() == 1.0

    assert isinstance(val_dataset[0], Data)
    assert val_dataset[0].edge_label.min() == 0.0
    assert val_dataset[0].edge_label.max() == 1.0

    assert isinstance(test_dataset[0], Data)
    assert test_dataset[0].edge_label.min() == 0.0
    assert test_dataset[0].edge_label.max() == 1.0