File: test_random_node_split.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (159 lines) | stat: -rw-r--r-- 6,824 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import pytest
import torch

from torch_geometric.data import Data, HeteroData
from torch_geometric.transforms import RandomNodeSplit


@pytest.mark.parametrize('num_splits', [1, 2])
def test_random_node_split(num_splits):
    num_nodes, num_classes = 1000, 4
    x = torch.randn(num_nodes, 16)
    y = torch.randint(num_classes, (num_nodes, ), dtype=torch.long)
    data = Data(x=x, y=y)

    transform = RandomNodeSplit(split='train_rest', num_splits=num_splits,
                                num_val=100, num_test=200)
    assert str(transform) == 'RandomNodeSplit(split=train_rest)'
    data = transform(data)
    assert len(data) == 5

    train_mask = data.train_mask
    train_mask = train_mask.unsqueeze(-1) if num_splits == 1 else train_mask
    assert train_mask.size() == (num_nodes, num_splits)
    val_mask = data.val_mask
    val_mask = val_mask.unsqueeze(-1) if num_splits == 1 else val_mask
    assert val_mask.size() == (num_nodes, num_splits)
    test_mask = data.test_mask
    test_mask = test_mask.unsqueeze(-1) if num_splits == 1 else test_mask
    assert test_mask.size() == (num_nodes, num_splits)

    for i in range(train_mask.size(-1)):
        assert train_mask[:, i].sum() == num_nodes - 100 - 200
        assert val_mask[:, i].sum() == 100
        assert test_mask[:, i].sum() == 200
        assert (train_mask[:, i] & val_mask[:, i] & test_mask[:, i]).sum() == 0
        assert ((train_mask[:, i] | val_mask[:, i]
                 | test_mask[:, i]).sum() == num_nodes)

    transform = RandomNodeSplit(split='train_rest', num_splits=num_splits,
                                num_val=0.1, num_test=0.2)
    data = transform(data)

    train_mask = data.train_mask
    train_mask = train_mask.unsqueeze(-1) if num_splits == 1 else train_mask
    val_mask = data.val_mask
    val_mask = val_mask.unsqueeze(-1) if num_splits == 1 else val_mask
    test_mask = data.test_mask
    test_mask = test_mask.unsqueeze(-1) if num_splits == 1 else test_mask

    for i in range(train_mask.size(-1)):
        assert train_mask[:, i].sum() == num_nodes - 100 - 200
        assert val_mask[:, i].sum() == 100
        assert test_mask[:, i].sum() == 200
        assert (train_mask[:, i] & val_mask[:, i] & test_mask[:, i]).sum() == 0
        assert ((train_mask[:, i] | val_mask[:, i]
                 | test_mask[:, i]).sum() == num_nodes)

    transform = RandomNodeSplit(split='test_rest', num_splits=num_splits,
                                num_train_per_class=10, num_val=100)
    assert str(transform) == 'RandomNodeSplit(split=test_rest)'
    data = transform(data)
    assert len(data) == 5

    train_mask = data.train_mask
    train_mask = train_mask.unsqueeze(-1) if num_splits == 1 else train_mask
    val_mask = data.val_mask
    val_mask = val_mask.unsqueeze(-1) if num_splits == 1 else val_mask
    test_mask = data.test_mask
    test_mask = test_mask.unsqueeze(-1) if num_splits == 1 else test_mask

    for i in range(train_mask.size(-1)):
        assert train_mask[:, i].sum() == 10 * num_classes
        assert val_mask[:, i].sum() == 100
        assert test_mask[:, i].sum() == num_nodes - 10 * num_classes - 100
        assert (train_mask[:, i] & val_mask[:, i] & test_mask[:, i]).sum() == 0
        assert ((train_mask[:, i] | val_mask[:, i]
                 | test_mask[:, i]).sum() == num_nodes)

    transform = RandomNodeSplit(split='test_rest', num_splits=num_splits,
                                num_train_per_class=10, num_val=0.1)
    data = transform(data)

    train_mask = data.train_mask
    train_mask = train_mask.unsqueeze(-1) if num_splits == 1 else train_mask
    val_mask = data.val_mask
    val_mask = val_mask.unsqueeze(-1) if num_splits == 1 else val_mask
    test_mask = data.test_mask
    test_mask = test_mask.unsqueeze(-1) if num_splits == 1 else test_mask

    for i in range(train_mask.size(-1)):
        assert train_mask[:, i].sum() == 10 * num_classes
        assert val_mask[:, i].sum() == 100
        assert test_mask[:, i].sum() == num_nodes - 10 * num_classes - 100
        assert (train_mask[:, i] & val_mask[:, i] & test_mask[:, i]).sum() == 0
        assert ((train_mask[:, i] | val_mask[:, i]
                 | test_mask[:, i]).sum() == num_nodes)

    transform = RandomNodeSplit(split='random', num_splits=num_splits,
                                num_train_per_class=10, num_val=100,
                                num_test=200)
    assert str(transform) == 'RandomNodeSplit(split=random)'
    data = transform(data)
    assert len(data) == 5

    train_mask = data.train_mask
    train_mask = train_mask.unsqueeze(-1) if num_splits == 1 else train_mask
    val_mask = data.val_mask
    val_mask = val_mask.unsqueeze(-1) if num_splits == 1 else val_mask
    test_mask = data.test_mask
    test_mask = test_mask.unsqueeze(-1) if num_splits == 1 else test_mask

    for i in range(train_mask.size(-1)):
        assert train_mask[:, i].sum() == 10 * num_classes
        assert val_mask[:, i].sum() == 100
        assert test_mask[:, i].sum() == 200
        assert (train_mask[:, i] & val_mask[:, i] & test_mask[:, i]).sum() == 0
        assert ((train_mask[:, i] | val_mask[:, i]
                 | test_mask[:, i]).sum() == 10 * num_classes + 100 + 200)

    transform = RandomNodeSplit(split='random', num_splits=num_splits,
                                num_train_per_class=10, num_val=0.1,
                                num_test=0.2)
    assert str(transform) == 'RandomNodeSplit(split=random)'
    data = transform(data)

    train_mask = data.train_mask
    train_mask = train_mask.unsqueeze(-1) if num_splits == 1 else train_mask
    val_mask = data.val_mask
    val_mask = val_mask.unsqueeze(-1) if num_splits == 1 else val_mask
    test_mask = data.test_mask
    test_mask = test_mask.unsqueeze(-1) if num_splits == 1 else test_mask

    for i in range(train_mask.size(-1)):
        assert train_mask[:, i].sum() == 10 * num_classes
        assert val_mask[:, i].sum() == 100
        assert test_mask[:, i].sum() == 200
        assert (train_mask[:, i] & val_mask[:, i] & test_mask[:, i]).sum() == 0
        assert ((train_mask[:, i] | val_mask[:, i]
                 | test_mask[:, i]).sum() == 10 * num_classes + 100 + 200)


def test_random_node_split_on_hetero_data():
    data = HeteroData()

    data['paper'].x = torch.randn(2000, 16)
    data['paper'].y = torch.randint(4, (2000, ), dtype=torch.long)
    data['author'].x = torch.randn(300, 16)

    transform = RandomNodeSplit()
    assert str(transform) == 'RandomNodeSplit(split=train_rest)'
    data = transform(data)
    assert len(data) == 5

    assert len(data['author']) == 1
    assert len(data['paper']) == 5

    assert data['paper'].train_mask.sum() == 500
    assert data['paper'].val_mask.sum() == 500
    assert data['paper'].test_mask.sum() == 1000