File: test_to_undirected.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (69 lines) | stat: -rw-r--r-- 2,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch

from torch_geometric.data import Data, HeteroData
from torch_geometric.transforms import ToUndirected


def test_to_undirected():
    assert str(ToUndirected()) == 'ToUndirected()'

    edge_index = torch.tensor([[2, 0, 2], [3, 1, 0]])
    edge_weight = torch.randn(edge_index.size(1))
    edge_attr = torch.randn(edge_index.size(1), 8)

    perm = torch.tensor([1, 2, 1, 2, 0, 0])

    data = Data(edge_index=edge_index, edge_weight=edge_weight,
                edge_attr=edge_attr, num_nodes=4)
    data = ToUndirected()(data)
    assert len(data) == 4
    assert data.edge_index.tolist() == [[0, 0, 1, 2, 2, 3], [1, 2, 0, 0, 3, 2]]
    assert data.edge_weight.tolist() == edge_weight[perm].tolist()
    assert data.edge_attr.tolist() == edge_attr[perm].tolist()
    assert data.num_nodes == 4


def test_to_undirected_with_duplicates():
    edge_index = torch.tensor([[0, 0, 1, 1], [0, 1, 0, 2]])
    edge_weight = torch.ones(4)

    data = Data(edge_index=edge_index, edge_weight=edge_weight, num_nodes=3)
    data = ToUndirected()(data)
    assert len(data) == 3
    assert data.edge_index.tolist() == [[0, 0, 1, 1, 2], [0, 1, 0, 2, 1]]
    assert data.edge_weight.tolist() == [2, 2, 2, 1, 1]
    assert data.num_nodes == 3


def test_hetero_to_undirected():
    edge_index = torch.tensor([[2, 0], [3, 1]])
    edge_weight = torch.randn(edge_index.size(1))
    edge_attr = torch.randn(edge_index.size(1), 8)

    perm = torch.tensor([1, 1, 0, 0])

    data = HeteroData()
    data['v'].num_nodes = 4
    data['w'].num_nodes = 4
    data['v', 'v'].edge_index = edge_index
    data['v', 'v'].edge_weight = edge_weight
    data['v', 'v'].edge_attr = edge_attr
    data['v', 'w'].edge_index = edge_index
    data['v', 'w'].edge_weight = edge_weight
    data['v', 'w'].edge_attr = edge_attr

    from torch_geometric.transforms import ToUndirected

    assert not data.is_undirected()
    data = ToUndirected()(data)
    assert data.is_undirected()

    assert data['v', 'v'].edge_index.tolist() == [[0, 1, 2, 3], [1, 0, 3, 2]]
    assert data['v', 'v'].edge_weight.tolist() == edge_weight[perm].tolist()
    assert data['v', 'v'].edge_attr.tolist() == edge_attr[perm].tolist()
    assert data['v', 'w'].edge_index.tolist() == edge_index.tolist()
    assert data['v', 'w'].edge_weight.tolist() == edge_weight.tolist()
    assert data['v', 'w'].edge_attr.tolist() == edge_attr.tolist()
    assert data['w', 'v'].edge_index.tolist() == [[3, 1], [2, 0]]
    assert data['w', 'v'].edge_weight.tolist() == edge_weight.tolist()
    assert data['w', 'v'].edge_attr.tolist() == edge_attr.tolist()