File: test_assortativity.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (30 lines) | stat: -rw-r--r-- 1,124 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import pytest
import torch

import torch_geometric.typing
from torch_geometric.typing import SparseTensor
from torch_geometric.utils import assortativity


def test_assortativity():
    # Completely assortative graph:
    edge_index = torch.tensor([[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5],
                               [1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 5, 4]])
    out = assortativity(edge_index)
    assert pytest.approx(out, abs=1e-5) == 1.0

    if torch_geometric.typing.WITH_TORCH_SPARSE:
        adj = SparseTensor.from_edge_index(edge_index, sparse_sizes=[6, 6])
        out = assortativity(adj)
        assert pytest.approx(out, abs=1e-5) == 1.0

    # Completely disassortative graph:
    edge_index = torch.tensor([[0, 1, 2, 3, 4, 5, 5, 5, 5, 5],
                               [5, 5, 5, 5, 5, 0, 1, 2, 3, 4]])
    out = assortativity(edge_index)
    assert pytest.approx(out, abs=1e-5) == -1.0

    if torch_geometric.typing.WITH_TORCH_SPARSE:
        adj = SparseTensor.from_edge_index(edge_index, sparse_sizes=[6, 6])
        out = assortativity(adj)
        assert pytest.approx(out, abs=1e-5) == -1.0