1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
import pytest
import torch
from torch_geometric import seed_everything
from torch_geometric.utils import (
add_random_edge,
is_undirected,
mask_feature,
shuffle_node,
)
def test_shuffle_node():
x = torch.tensor([[0, 1, 2], [3, 4, 5]], dtype=torch.float)
out = shuffle_node(x, training=False)
assert out[0].tolist() == x.tolist()
assert out[1].tolist() == list(range(len(x)))
torch.manual_seed(5)
out = shuffle_node(x)
assert out[0].tolist() == [[3.0, 4.0, 5.0], [0.0, 1.0, 2.0]]
assert out[1].tolist() == [1, 0]
torch.manual_seed(10)
x = torch.arange(21).view(7, 3).to(torch.float)
batch = torch.tensor([0, 0, 1, 1, 2, 2, 2])
out = shuffle_node(x, batch)
assert out[0].tolist() == [[3.0, 4.0, 5.0], [0.0, 1.0, 2.0],
[9.0, 10.0, 11.0], [6.0, 7.0, 8.0],
[12.0, 13.0, 14.0], [18.0, 19.0, 20.0],
[15.0, 16.0, 17.0]]
assert out[1].tolist() == [1, 0, 3, 2, 4, 6, 5]
def test_mask_feature():
x = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
dtype=torch.float)
out = mask_feature(x, training=False)
assert out[0].tolist() == x.tolist()
assert torch.all(out[1])
torch.manual_seed(4)
out = mask_feature(x)
assert out[0].tolist() == [[1.0, 2.0, 0.0, 0.0], [5.0, 6.0, 0.0, 0.0],
[9.0, 10.0, 0.0, 0.0]]
assert out[1].tolist() == [[True, True, False, False]]
torch.manual_seed(5)
out = mask_feature(x, mode='row')
assert out[0].tolist() == [[1.0, 2.0, 3.0, 4.0], [0.0, 0.0, 0.0, 0.0],
[9.0, 10.0, 11.0, 12.0]]
assert out[1].tolist() == [[True], [False], [True]]
torch.manual_seed(7)
out = mask_feature(x, mode='all')
assert out[0].tolist() == [[1.0, 0.0, 3.0, 4.0], [0.0, 0.0, 0.0, 8.0],
[0.0, 10.0, 11.0, 12.0]]
assert out[1].tolist() == [[True, False, True, True],
[False, False, False, True],
[False, True, True, True]]
torch.manual_seed(7)
out = mask_feature(x, mode='all', fill_value=-1)
assert out[0].tolist() == [[1.0, -1.0, 3.0, 4.0], [-1.0, -1.0, -1.0, 8.0],
[-1.0, 10.0, 11.0, 12.0]]
assert out[1].tolist() == [[True, False, True, True],
[False, False, False, True],
[False, True, True, True]]
def test_add_random_edge():
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])
out = add_random_edge(edge_index, p=0.5, training=False)
assert out[0].tolist() == edge_index.tolist()
assert out[1].tolist() == [[], []]
seed_everything(5)
out = add_random_edge(edge_index, p=0.5)
assert out[0].tolist() == [[0, 1, 1, 2, 2, 3, 3, 1, 2],
[1, 0, 2, 1, 3, 2, 0, 3, 0]]
assert out[1].tolist() == [[3, 1, 2], [0, 3, 0]]
seed_everything(6)
out = add_random_edge(edge_index, p=0.5, force_undirected=True)
assert out[0].tolist() == [[0, 1, 1, 2, 2, 3, 1, 3],
[1, 0, 2, 1, 3, 2, 3, 1]]
assert out[1].tolist() == [[1, 3], [3, 1]]
assert is_undirected(out[0])
assert is_undirected(out[1])
# Test for bipartite graph:
seed_everything(7)
edge_index = torch.tensor([[0, 1, 2, 3, 4, 5], [2, 3, 1, 4, 2, 1]])
with pytest.raises(RuntimeError, match="not supported for bipartite"):
add_random_edge(edge_index, force_undirected=True, num_nodes=(6, 5))
out = add_random_edge(edge_index, p=0.5, num_nodes=(6, 5))
assert out[0].tolist() == [[0, 1, 2, 3, 4, 5, 2, 0, 2],
[2, 3, 1, 4, 2, 1, 0, 4, 2]]
assert out[1].tolist() == [[2, 0, 2], [0, 4, 2]]
|