1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
from typing import List, Optional, Tuple
import torch
from torch import Tensor
from torch_geometric.utils import coalesce
def test_coalesce():
edge_index = torch.tensor([[2, 1, 1, 0, 2], [1, 2, 0, 1, 1]])
edge_attr = torch.tensor([[1], [2], [3], [4], [5]])
out = coalesce(edge_index)
assert out.tolist() == [[0, 1, 1, 2], [1, 0, 2, 1]]
out = coalesce(edge_index, None)
assert out[0].tolist() == [[0, 1, 1, 2], [1, 0, 2, 1]]
assert out[1] is None
out = coalesce(edge_index, edge_attr)
assert out[0].tolist() == [[0, 1, 1, 2], [1, 0, 2, 1]]
assert out[1].tolist() == [[4], [3], [2], [6]]
out = coalesce(edge_index, [edge_attr, edge_attr.view(-1)])
assert out[0].tolist() == [[0, 1, 1, 2], [1, 0, 2, 1]]
assert out[1][0].tolist() == [[4], [3], [2], [6]]
assert out[1][1].tolist() == [4, 3, 2, 6]
out = coalesce((edge_index[0], edge_index[1]))
assert isinstance(out, tuple)
assert out[0].tolist() == [0, 1, 1, 2]
assert out[1].tolist() == [1, 0, 2, 1]
def test_coalesce_without_duplicates():
edge_index = torch.tensor([[2, 1, 1, 0], [1, 2, 0, 1]])
edge_attr = torch.tensor([[1], [2], [3], [4]])
out = coalesce(edge_index)
assert out.tolist() == [[0, 1, 1, 2], [1, 0, 2, 1]]
out = coalesce(edge_index, None)
assert out[0].tolist() == [[0, 1, 1, 2], [1, 0, 2, 1]]
assert out[1] is None
out = coalesce(edge_index, edge_attr)
assert out[0].tolist() == [[0, 1, 1, 2], [1, 0, 2, 1]]
assert out[1].tolist() == [[4], [3], [2], [1]]
out = coalesce(edge_index, [edge_attr, edge_attr.view(-1)])
assert out[0].tolist() == [[0, 1, 1, 2], [1, 0, 2, 1]]
assert out[1][0].tolist() == [[4], [3], [2], [1]]
assert out[1][1].tolist() == [4, 3, 2, 1]
def test_coalesce_jit():
@torch.jit.script
def wrapper1(edge_index: Tensor) -> Tensor:
return coalesce(edge_index)
@torch.jit.script
def wrapper2(
edge_index: Tensor,
edge_attr: Optional[Tensor],
) -> Tuple[Tensor, Optional[Tensor]]:
return coalesce(edge_index, edge_attr)
@torch.jit.script
def wrapper3(
edge_index: Tensor,
edge_attr: List[Tensor],
) -> Tuple[Tensor, List[Tensor]]:
return coalesce(edge_index, edge_attr)
edge_index = torch.tensor([[2, 1, 1, 0], [1, 2, 0, 1]])
edge_attr = torch.tensor([[1], [2], [3], [4]])
out = wrapper1(edge_index)
assert out.size() == edge_index.size()
out = wrapper2(edge_index, None)
assert out[0].size() == edge_index.size()
assert out[1] is None
out = wrapper2(edge_index, edge_attr)
assert out[0].size() == edge_index.size()
assert out[1].size() == edge_attr.size()
out = wrapper3(edge_index, [edge_attr, edge_attr.view(-1)])
assert out[0].size() == edge_index.size()
assert len(out[1]) == 2
assert out[1][0].size() == edge_attr.size()
assert out[1][1].size() == edge_attr.view(-1).size()
|