File: test_negative_sampling.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (168 lines) | stat: -rw-r--r-- 6,676 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch

from torch_geometric.utils import (
    batched_negative_sampling,
    contains_self_loops,
    is_undirected,
    negative_sampling,
    structured_negative_sampling,
    structured_negative_sampling_feasible,
    to_undirected,
)
from torch_geometric.utils._negative_sampling import (
    edge_index_to_vector,
    vector_to_edge_index,
)


def is_negative(edge_index, neg_edge_index, size, bipartite):
    adj = torch.zeros(size, dtype=torch.bool)
    neg_adj = torch.zeros(size, dtype=torch.bool)

    adj[edge_index[0], edge_index[1]] = True
    neg_adj[neg_edge_index[0], neg_edge_index[1]] = True

    if not bipartite:
        arange = torch.arange(size[0])
        assert neg_adj[arange, arange].sum() == 0

    return (adj & neg_adj).sum() == 0


def test_edge_index_to_vector_and_vice_versa():
    # Create a fully-connected graph:
    N = 10
    row = torch.arange(N).view(-1, 1).repeat(1, N).view(-1)
    col = torch.arange(N).view(1, -1).repeat(N, 1).view(-1)
    edge_index = torch.stack([row, col], dim=0)

    idx, population = edge_index_to_vector(edge_index, (N, N), bipartite=True)
    assert population == N * N
    assert idx.tolist() == list(range(population))
    edge_index2 = vector_to_edge_index(idx, (N, N), bipartite=True)
    assert is_undirected(edge_index2)
    assert edge_index.tolist() == edge_index2.tolist()

    idx, population = edge_index_to_vector(edge_index, (N, N), bipartite=False)
    assert population == N * N - N
    assert idx.tolist() == list(range(population))
    mask = edge_index[0] != edge_index[1]  # Remove self-loops.
    edge_index2 = vector_to_edge_index(idx, (N, N), bipartite=False)
    assert is_undirected(edge_index2)
    assert edge_index[:, mask].tolist() == edge_index2.tolist()

    idx, population = edge_index_to_vector(edge_index, (N, N), bipartite=False,
                                           force_undirected=True)
    assert population == (N * (N + 1)) / 2 - N
    assert idx.tolist() == list(range(population))
    mask = edge_index[0] != edge_index[1]  # Remove self-loops.
    edge_index2 = vector_to_edge_index(idx, (N, N), bipartite=False,
                                       force_undirected=True)
    assert is_undirected(edge_index2)
    assert edge_index[:, mask].tolist() == to_undirected(edge_index2).tolist()


def test_negative_sampling():
    edge_index = torch.as_tensor([[0, 0, 1, 2], [0, 1, 2, 3]])

    neg_edge_index = negative_sampling(edge_index)
    assert neg_edge_index.size(1) == edge_index.size(1)
    assert is_negative(edge_index, neg_edge_index, (4, 4), bipartite=False)

    neg_edge_index = negative_sampling(edge_index, method='dense')
    assert neg_edge_index.size(1) == edge_index.size(1)
    assert is_negative(edge_index, neg_edge_index, (4, 4), bipartite=False)

    neg_edge_index = negative_sampling(edge_index, num_neg_samples=2)
    assert neg_edge_index.size(1) == 2
    assert is_negative(edge_index, neg_edge_index, (4, 4), bipartite=False)

    edge_index = to_undirected(edge_index)
    neg_edge_index = negative_sampling(edge_index, force_undirected=True)
    assert neg_edge_index.size(1) == edge_index.size(1) - 1
    assert is_undirected(neg_edge_index)
    assert is_negative(edge_index, neg_edge_index, (4, 4), bipartite=False)


def test_bipartite_negative_sampling():
    edge_index = torch.as_tensor([[0, 0, 1, 2], [0, 1, 2, 3]])

    neg_edge_index = negative_sampling(edge_index, num_nodes=(3, 4))
    assert neg_edge_index.size(1) == edge_index.size(1)
    assert is_negative(edge_index, neg_edge_index, (3, 4), bipartite=True)

    neg_edge_index = negative_sampling(edge_index, num_nodes=(3, 4),
                                       num_neg_samples=2)
    assert neg_edge_index.size(1) == 2
    assert is_negative(edge_index, neg_edge_index, (3, 4), bipartite=True)


def test_batched_negative_sampling():
    edge_index = torch.as_tensor([[0, 0, 1, 2], [0, 1, 2, 3]])
    edge_index = torch.cat([edge_index, edge_index + 4], dim=1)
    batch = torch.tensor([0, 0, 0, 0, 1, 1, 1, 1])

    neg_edge_index = batched_negative_sampling(edge_index, batch)
    assert neg_edge_index.size(1) <= edge_index.size(1)

    adj = torch.zeros(8, 8, dtype=torch.bool)
    adj[edge_index[0], edge_index[1]] = True
    neg_adj = torch.zeros(8, 8, dtype=torch.bool)
    neg_adj[neg_edge_index[0], neg_edge_index[1]] = True

    assert (adj & neg_adj).sum() == 0
    assert (adj | neg_adj).sum() == edge_index.size(1) + neg_edge_index.size(1)
    assert neg_adj[:4, 4:].sum() == 0
    assert neg_adj[4:, :4].sum() == 0


def test_bipartite_batched_negative_sampling():
    edge_index1 = torch.as_tensor([[0, 0, 1, 1], [0, 1, 2, 3]])
    edge_index2 = edge_index1 + torch.tensor([[2], [4]])
    edge_index3 = edge_index2 + torch.tensor([[2], [4]])
    edge_index = torch.cat([edge_index1, edge_index2, edge_index3], dim=1)
    src_batch = torch.tensor([0, 0, 1, 1, 2, 2])
    dst_batch = torch.tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2])

    neg_edge_index = batched_negative_sampling(edge_index,
                                               (src_batch, dst_batch))
    assert neg_edge_index.size(1) <= edge_index.size(1)

    adj = torch.zeros(6, 12, dtype=torch.bool)
    adj[edge_index[0], edge_index[1]] = True
    neg_adj = torch.zeros(6, 12, dtype=torch.bool)
    neg_adj[neg_edge_index[0], neg_edge_index[1]] = True

    assert (adj & neg_adj).sum() == 0
    assert (adj | neg_adj).sum() == edge_index.size(1) + neg_edge_index.size(1)


def test_structured_negative_sampling():
    edge_index = torch.as_tensor([[0, 0, 1, 2], [0, 1, 2, 3]])

    i, j, k = structured_negative_sampling(edge_index)
    assert i.size(0) == edge_index.size(1)
    assert j.size(0) == edge_index.size(1)
    assert k.size(0) == edge_index.size(1)

    adj = torch.zeros(4, 4, dtype=torch.bool)
    adj[i, j] = 1

    neg_adj = torch.zeros(4, 4, dtype=torch.bool)
    neg_adj[i, k] = 1
    assert (adj & neg_adj).sum() == 0

    # Test with no self-loops:
    edge_index = torch.LongTensor([[0, 0, 1, 1, 2], [1, 2, 0, 2, 1]])
    i, j, k = structured_negative_sampling(edge_index, num_nodes=4,
                                           contains_neg_self_loops=False)
    neg_edge_index = torch.vstack([i, k])
    assert not contains_self_loops(neg_edge_index)


def test_structured_negative_sampling_feasible():
    edge_index = torch.LongTensor([[0, 0, 1, 1, 2, 2, 2],
                                   [1, 2, 0, 2, 0, 1, 1]])
    assert not structured_negative_sampling_feasible(edge_index, 3, False)
    assert structured_negative_sampling_feasible(edge_index, 3, True)
    assert structured_negative_sampling_feasible(edge_index, 4, False)