1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
from itertools import product
import pytest
import torch
import torch_geometric.typing
from torch_geometric.profile import benchmark
from torch_geometric.testing import withCUDA, withDevice, withPackage
from torch_geometric.utils import group_argsort, group_cat, scatter
from torch_geometric.utils._scatter import scatter_argmax
def test_scatter_validate():
src = torch.randn(100, 32)
index = torch.randint(0, 10, (100, ), dtype=torch.long)
with pytest.raises(ValueError, match="must be one-dimensional"):
scatter(src, index.view(-1, 1))
with pytest.raises(ValueError, match="must lay between 0 and 1"):
scatter(src, index, dim=2)
with pytest.raises(ValueError, match="invalid `reduce` argument 'std'"):
scatter(src, index, reduce='std')
@withDevice
@withPackage('torch_scatter')
@pytest.mark.parametrize('reduce', ['sum', 'add', 'mean', 'min', 'max'])
def test_scatter(reduce, device):
import torch_scatter
src = torch.randn(100, 16, device=device)
index = torch.randint(0, 8, (100, ), device=device)
if device.type == 'mps' and reduce in ['min', 'max']:
with pytest.raises(NotImplementedError, match="for the MPS device"):
scatter(src, index, dim=0, reduce=reduce)
return
out1 = scatter(src, index, dim=0, reduce=reduce)
out2 = torch_scatter.scatter(src, index, dim=0, reduce=reduce)
assert out1.device == device
assert torch.allclose(out1, out2, atol=1e-6)
jit = torch.jit.script(scatter)
out3 = jit(src, index, dim=0, reduce=reduce)
assert torch.allclose(out1, out3, atol=1e-6)
src = torch.randn(8, 100, 16, device=device)
out1 = scatter(src, index, dim=1, reduce=reduce)
out2 = torch_scatter.scatter(src, index, dim=1, reduce=reduce)
assert out1.device == device
assert torch.allclose(out1, out2, atol=1e-6)
@withDevice
@pytest.mark.parametrize('reduce', ['sum', 'add', 'mean', 'min', 'max'])
def test_scatter_backward(reduce, device):
src = torch.randn(8, 100, 16, device=device, requires_grad=True)
index = torch.randint(0, 8, (100, ), device=device)
if device.type == 'mps' and reduce in ['min', 'max']:
with pytest.raises(NotImplementedError, match="for the MPS device"):
scatter(src, index, dim=1, reduce=reduce)
return
out = scatter(src, index, dim=1, reduce=reduce)
assert src.grad is None
out.mean().backward()
assert src.grad is not None
@withDevice
def test_scatter_any(device):
src = torch.randn(6, 4, device=device)
index = torch.tensor([0, 0, 1, 1, 2, 2], device=device)
out = scatter(src, index, dim=0, reduce='any')
for i in range(3):
for j in range(4):
assert float(out[i, j]) in src[2 * i:2 * i + 2, j].tolist()
@withDevice
@pytest.mark.parametrize('num_groups', [4])
@pytest.mark.parametrize('descending', [False, True])
def test_group_argsort(num_groups, descending, device):
src = torch.randn(20, device=device)
index = torch.randint(0, num_groups, (20, ), device=device)
out = group_argsort(src, index, 0, num_groups, descending=descending)
expected = torch.empty_like(index)
for i in range(num_groups):
mask = index == i
tmp = src[mask].argsort(descending=descending)
perm = torch.empty_like(tmp)
perm[tmp] = torch.arange(tmp.numel(), device=device)
expected[mask] = perm
assert torch.equal(out, expected)
empty_tensor = torch.tensor([], device=device)
out = group_argsort(empty_tensor, empty_tensor)
assert out.numel() == 0
@withCUDA
def test_scatter_argmax(device):
src = torch.arange(5, device=device)
index = torch.tensor([2, 2, 0, 0, 3], device=device)
old_state = torch_geometric.typing.WITH_TORCH_SCATTER
torch_geometric.typing.WITH_TORCH_SCATTER = False
argmax = scatter_argmax(src, index, dim_size=6)
torch_geometric.typing.WITH_TORCH_SCATTER = old_state
assert argmax.tolist() == [3, 5, 1, 4, 5, 5]
@withDevice
def test_group_cat(device):
x1 = torch.randn(4, 4, device=device)
x2 = torch.randn(2, 4, device=device)
index1 = torch.tensor([0, 0, 1, 2], device=device)
index2 = torch.tensor([0, 2], device=device)
expected = torch.cat([x1[:2], x2[:1], x1[2:4], x2[1:]], dim=0)
out, index = group_cat(
[x1, x2],
[index1, index2],
dim=0,
return_index=True,
)
assert torch.equal(out, expected)
assert index.tolist() == [0, 0, 0, 1, 2, 2]
if __name__ == '__main__':
# Insights on GPU:
# ================
# * "sum": Prefer `scatter_add_` implementation
# * "mean": Prefer manual implementation via `scatter_add_` + `count`
# * "min"/"max":
# * Prefer `scatter_reduce_` implementation without gradients
# * Prefer `torch_sparse` implementation with gradients
# * "mul": Prefer `torch_sparse` implementation
#
# Insights on CPU:
# ================
# * "sum": Prefer `scatter_add_` implementation
# * "mean": Prefer manual implementation via `scatter_add_` + `count`
# * "min"/"max": Prefer `scatter_reduce_` implementation
# * "mul" (probably not worth branching for this):
# * Prefer `scatter_reduce_` implementation without gradients
# * Prefer `torch_sparse` implementation with gradients
import argparse
from torch_geometric.typing import WITH_TORCH_SCATTER, torch_scatter
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--backward', action='store_true')
parser.add_argument('--aggr', type=str, default='all')
args = parser.parse_args()
num_nodes_list = [4_000, 8_000, 16_000, 32_000, 64_000]
if args.aggr == 'all':
aggrs = ['sum', 'mean', 'min', 'max', 'mul']
else:
aggrs = args.aggr.split(',')
def pytorch_scatter(x, index, dim_size, reduce):
if reduce == 'min' or reduce == 'max':
reduce = f'a{aggr}' # `amin` or `amax`
elif reduce == 'mul':
reduce = 'prod'
out = x.new_zeros(dim_size, x.size(-1))
include_self = reduce in ['sum', 'mean']
index = index.view(-1, 1).expand(-1, x.size(-1))
out.scatter_reduce_(0, index, x, reduce, include_self=include_self)
return out
def pytorch_index_add(x, index, dim_size, reduce):
if reduce != 'sum':
raise NotImplementedError
out = x.new_zeros(dim_size, x.size(-1))
out.index_add_(0, index, x)
return out
def own_scatter(x, index, dim_size, reduce):
return torch_scatter.scatter(x, index, dim=0, dim_size=num_nodes,
reduce=reduce)
def optimized_scatter(x, index, dim_size, reduce):
return scatter(x, index, dim=0, dim_size=dim_size, reduce=reduce)
for aggr, num_nodes in product(aggrs, num_nodes_list):
num_edges = num_nodes * 50
print(f'aggr: {aggr}, #nodes: {num_nodes}, #edges: {num_edges}')
x = torch.randn(num_edges, 64, device=args.device)
index = torch.randint(num_nodes, (num_edges, ), device=args.device)
funcs = [pytorch_scatter]
func_names = ['PyTorch scatter_reduce']
if aggr == 'sum':
funcs.append(pytorch_index_add)
func_names.append('PyTorch index_add')
if WITH_TORCH_SCATTER:
funcs.append(own_scatter)
func_names.append('torch_scatter')
funcs.append(optimized_scatter)
func_names.append('Optimized PyG Scatter')
benchmark(
funcs=funcs,
func_names=func_names,
args=(x, index, num_nodes, aggr),
num_steps=100 if args.device == 'cpu' else 1000,
num_warmups=50 if args.device == 'cpu' else 500,
backward=args.backward,
)
|