File: test_spmm.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (161 lines) | stat: -rw-r--r-- 5,608 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import itertools
import warnings

import pytest
import torch
from torch import Tensor

import torch_geometric.typing
from torch_geometric import EdgeIndex
from torch_geometric.profile import benchmark
from torch_geometric.testing import withCUDA, withPackage
from torch_geometric.typing import SparseTensor
from torch_geometric.utils import spmm, to_torch_coo_tensor


@withCUDA
@pytest.mark.parametrize('reduce', ['sum', 'mean'])
def test_spmm_basic(device, reduce):
    src = torch.randn(5, 4, device=device)
    other = torch.randn(4, 8, device=device)

    out1 = (src @ other) / (src.size(1) if reduce == 'mean' else 1)
    out2 = spmm(src.to_sparse_csr(), other, reduce=reduce)
    assert out1.size() == (5, 8)
    assert torch.allclose(out1, out2, atol=1e-6)
    if torch_geometric.typing.WITH_TORCH_SPARSE:
        out3 = spmm(SparseTensor.from_dense(src), other, reduce=reduce)
        assert torch.allclose(out2, out3, atol=1e-6)

    # Test `mean` reduction with isolated nodes:
    src[0] = 0.
    out1 = (src @ other) / (4. if reduce == 'mean' else 1.)
    out2 = spmm(src.to_sparse_csr(), other, reduce=reduce)
    assert out1.size() == (5, 8)
    assert torch.allclose(out1, out2, atol=1e-6)
    if torch_geometric.typing.WITH_TORCH_SPARSE:
        out3 = spmm(SparseTensor.from_dense(src), other, reduce=reduce)
        assert torch.allclose(out2, out3, atol=1e-6)


@withCUDA
@withPackage('torch>=2.0.0')
@pytest.mark.parametrize('reduce', ['min', 'max'])
def test_spmm_reduce(device, reduce):
    src = torch.randn(5, 4, device=device)
    other = torch.randn(4, 8, device=device)

    if src.is_cuda:
        with pytest.raises(NotImplementedError, match="not yet supported"):
            spmm(src.to_sparse_csr(), other, reduce)
    else:
        out1 = spmm(src.to_sparse_csr(), other, reduce)
        assert out1.size() == (5, 8)
        if torch_geometric.typing.WITH_TORCH_SPARSE:
            out2 = spmm(SparseTensor.from_dense(src), other, reduce=reduce)
            assert torch.allclose(out1, out2)


@withCUDA
@withPackage('torch>=2.0.0')
@pytest.mark.parametrize(
    'layout', [torch.sparse_coo, torch.sparse_csr, torch.sparse_csc])
@pytest.mark.parametrize('reduce', ['sum', 'mean', 'min', 'max'])
def test_spmm_layout(device, layout, reduce):
    src = torch.randn(5, 4, device=device)
    if layout == torch.sparse_coo:
        src = src.to_sparse_coo()
    elif layout == torch.sparse_csr:
        src = src.to_sparse_csr()
    else:
        assert layout == torch.sparse_csc
        src = src.to_sparse_csc()
    other = torch.randn(4, 8, device=device)

    if src.is_cuda and reduce in {'min', 'max'}:
        with pytest.raises(NotImplementedError, match="not yet supported"):
            spmm(src, other, reduce=reduce)
    elif layout != torch.sparse_csr:
        with pytest.warns(UserWarning, match="Converting sparse tensor"):
            spmm(src, other, reduce=reduce)
    else:
        spmm(src, other, reduce=reduce)


@pytest.mark.parametrize('reduce', ['sum', 'mean'])
def test_spmm_jit(reduce):
    @torch.jit.script
    def jit_torch_sparse(src: SparseTensor, other: Tensor,
                         reduce: str) -> Tensor:
        return spmm(src, other, reduce=reduce)

    @torch.jit.script
    def jit_torch(src: Tensor, other: Tensor, reduce: str) -> Tensor:
        return spmm(src, other, reduce=reduce)

    src = torch.randn(5, 4)
    other = torch.randn(4, 8)

    out1 = src @ other
    out2 = jit_torch(src.to_sparse_csr(), other, reduce)
    assert out1.size() == (5, 8)
    if reduce == 'sum':
        assert torch.allclose(out1, out2, atol=1e-6)
    if torch_geometric.typing.WITH_TORCH_SPARSE:
        out3 = jit_torch_sparse(SparseTensor.from_dense(src), other, reduce)
        assert torch.allclose(out2, out3, atol=1e-6)


@withCUDA
@withPackage('torch>=2.0.0')
@pytest.mark.parametrize('reduce', ['sum', 'mean', 'min', 'max'])
def test_spmm_edge_index(device, reduce):
    src = EdgeIndex(
        [[0, 1, 1, 2], [1, 0, 2, 1]],
        sparse_size=(4, 3),
        sort_order='row',
        device=device,
    )
    other = torch.rand(3, 4, device=device)
    out = spmm(src, other, reduce=reduce)
    assert out.size() == (4, 4)

    if not other.is_cuda or reduce not in ['min', 'max']:
        out2 = spmm(src.to_sparse_csr(), other, reduce=reduce)
        assert torch.allclose(out, out2)


if __name__ == '__main__':
    import argparse

    warnings.filterwarnings('ignore', ".*Sparse CSR tensor support.*")
    warnings.filterwarnings('ignore', ".*Converting sparse tensor to CSR.*")

    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cuda')
    parser.add_argument('--backward', action='store_true')
    args = parser.parse_args()

    num_nodes, num_edges = 10_000, 200_000
    x = torch.randn(num_nodes, 64, device=args.device)
    edge_index = torch.randint(num_nodes, (2, num_edges), device=args.device)

    reductions = ['sum', 'mean']
    if not x.is_cuda:
        reductions.extend(['min', 'max'])
    layouts = [torch.sparse_coo, torch.sparse_csr, torch.sparse_csc]

    for reduce, layout in itertools.product(reductions, layouts):
        print(f'Aggregator: {reduce}, Layout: {layout}')

        adj = to_torch_coo_tensor(edge_index, size=num_nodes)
        adj = adj.to_sparse(layout=layout)

        benchmark(
            funcs=[spmm],
            func_names=['spmm'],
            args=(adj, x, reduce),
            num_steps=50 if args.device == 'cpu' else 500,
            num_warmups=10 if args.device == 'cpu' else 100,
            backward=args.backward,
        )