1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
from typing import List, Optional
import torch
from torch import Tensor
import torch_geometric.typing
from torch_geometric.data import Data
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import GraphConv
from torch_geometric.testing import withPackage
from torch_geometric.typing import SparseTensor
from torch_geometric.utils import trim_to_layer
from torch_geometric.utils._trim_to_layer import trim_sparse_tensor
@withPackage('torch_sparse')
def test_trim_sparse_tensor():
edge_index = torch.tensor([[0, 0, 1, 2], [1, 2, 3, 4]])
adj = SparseTensor.from_edge_index(edge_index, sparse_sizes=[5, 5])
adj = trim_sparse_tensor(adj, size=(3, 3), num_seed_nodes=1)
row, col, _ = adj.coo()
assert row.tolist() == [0, 0]
assert col.tolist() == [1, 2]
def test_trim_to_layer_basic():
x0 = torch.arange(4)
edge_index0 = torch.tensor([[1, 2, 3], [0, 1, 2]])
edge_weight0 = torch.arange(3)
num_sampled_nodes_per_hop = [1, 1, 1]
num_sampled_edges_per_hop = [1, 1, 1]
x1, edge_index1, edge_weight1 = trim_to_layer(
layer=0,
num_sampled_nodes_per_hop=num_sampled_nodes_per_hop,
num_sampled_edges_per_hop=num_sampled_edges_per_hop,
x=x0,
edge_index=edge_index0,
edge_attr=edge_weight0,
)
assert torch.equal(x1, torch.arange(4))
assert edge_index1.tolist() == [[1, 2, 3], [0, 1, 2]]
assert torch.equal(edge_weight1, torch.arange(3))
if torch_geometric.typing.WITH_TORCH_SPARSE:
adj0 = SparseTensor.from_edge_index(edge_index0, edge_weight0, (4, 4))
x1, adj_t1, _ = trim_to_layer(
layer=0,
num_sampled_nodes_per_hop=num_sampled_nodes_per_hop,
num_sampled_edges_per_hop=num_sampled_edges_per_hop,
x=x0,
edge_index=adj0.t(),
edge_attr=edge_weight0,
)
adj1 = adj_t1.t()
assert adj1.sizes() == [4, 4]
row, col, value = adj1.coo()
assert torch.equal(x1, torch.arange(4))
assert row.tolist() == [1, 2, 3]
assert col.tolist() == [0, 1, 2]
assert torch.equal(value, torch.arange(3))
x2, edge_index2, edge_weight2 = trim_to_layer(
layer=1,
num_sampled_nodes_per_hop=num_sampled_nodes_per_hop,
num_sampled_edges_per_hop=num_sampled_edges_per_hop,
x=x1,
edge_index=edge_index1,
edge_attr=edge_weight1,
)
assert torch.equal(x2, torch.arange(3))
assert edge_index2.tolist() == [[1, 2], [0, 1]]
assert torch.equal(edge_weight2, torch.arange(2))
if torch_geometric.typing.WITH_TORCH_SPARSE:
adj1 = SparseTensor.from_edge_index(edge_index1, edge_weight1, (4, 4))
x2, adj_t2, _ = trim_to_layer(
layer=1,
num_sampled_nodes_per_hop=num_sampled_nodes_per_hop,
num_sampled_edges_per_hop=num_sampled_edges_per_hop,
x=x1,
edge_index=adj1.t(),
)
adj2 = adj_t2.t()
assert adj2.sizes() == [3, 3]
row, col, value = adj2.coo()
assert torch.equal(x2, torch.arange(3))
assert row.tolist() == [1, 2]
assert col.tolist() == [0, 1]
assert torch.equal(value, torch.arange(2))
x3, edge_index3, edge_weight3 = trim_to_layer(
layer=2,
num_sampled_nodes_per_hop=num_sampled_nodes_per_hop,
num_sampled_edges_per_hop=num_sampled_edges_per_hop,
x=x2,
edge_index=edge_index2,
edge_attr=edge_weight2,
)
assert torch.equal(x3, torch.arange(2))
assert edge_index3.tolist() == [[1], [0]]
assert torch.equal(edge_weight3, torch.arange(1))
if torch_geometric.typing.WITH_TORCH_SPARSE:
adj2 = SparseTensor.from_edge_index(edge_index2, edge_weight2, (3, 3))
x3, adj_t3, _ = trim_to_layer(
layer=2,
num_sampled_nodes_per_hop=num_sampled_nodes_per_hop,
num_sampled_edges_per_hop=num_sampled_edges_per_hop,
x=x2,
edge_index=adj2.t(),
)
adj3 = adj_t3.t()
assert adj3.sizes() == [2, 2]
row, col, value = adj3.coo()
assert torch.equal(x3, torch.arange(2))
assert row.tolist() == [1]
assert col.tolist() == [0]
assert torch.equal(value, torch.arange(1))
def test_trim_to_layer_hetero():
x = {'v': torch.arange(4)}
edge_index = {('v', 'to', 'v'): torch.tensor([[1, 2, 3], [0, 1, 2]])}
edge_weight = {('v', 'to', 'v'): torch.arange(3)}
num_sampled_nodes_per_hop = {'v': [1, 1, 1, 1]}
num_sampled_edges_per_hop = {('v', 'to', 'v'): [1, 1, 1]}
x, edge_index, edge_weight = trim_to_layer(
layer=1,
num_sampled_nodes_per_hop=num_sampled_nodes_per_hop,
num_sampled_edges_per_hop=num_sampled_edges_per_hop,
x=x,
edge_index=edge_index,
edge_attr=edge_weight,
)
assert torch.equal(x['v'], torch.arange(3))
assert edge_index['v', 'to', 'v'].tolist() == [[1, 2], [0, 1]]
assert torch.equal(edge_weight['v', 'to', 'v'], torch.arange(2))
class GNN(torch.nn.Module):
def __init__(self, num_layers: int):
super().__init__()
self.convs = torch.nn.ModuleList(
GraphConv(16, 16) for _ in range(num_layers))
def forward(
self,
x: Tensor,
edge_index: Tensor,
edge_weight: Tensor,
num_sampled_nodes: Optional[List[int]] = None,
num_sampled_edges: Optional[List[int]] = None,
) -> Tensor:
for i, conv in enumerate(self.convs):
if num_sampled_nodes is not None:
x, edge_index, edge_weight = trim_to_layer(
i, num_sampled_nodes, num_sampled_edges, x, edge_index,
edge_weight)
x = conv(x, edge_index, edge_weight)
return x
@withPackage('pyg_lib')
def test_trim_to_layer_with_neighbor_loader():
x = torch.randn(14, 16)
edge_index = torch.tensor([
[2, 3, 4, 5, 7, 7, 10, 11, 12, 13],
[0, 1, 2, 3, 2, 3, 7, 7, 7, 7],
])
edge_weight = torch.rand(edge_index.size(1))
data = Data(x=x, edge_index=edge_index, edge_weight=edge_weight)
loader = NeighborLoader(
data,
num_neighbors=[1, 2, 4],
batch_size=2,
shuffle=False,
)
batch = next(iter(loader))
model = GNN(num_layers=3)
out1 = model(batch.x, batch.edge_index, batch.edge_weight)[:2]
assert out1.size() == (2, 16)
out2 = model(batch.x, batch.edge_index, batch.edge_weight,
batch.num_sampled_nodes, batch.num_sampled_edges)[:2]
assert out2.size() == (2, 16)
assert torch.allclose(out1, out2, atol=1e-6)
|