File: aminer.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (131 lines) | stat: -rw-r--r-- 5,178 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import os.path as osp
from typing import Callable, List, Optional

import torch

from torch_geometric.data import (
    HeteroData,
    InMemoryDataset,
    download_url,
    extract_zip,
)
from torch_geometric.io import fs
from torch_geometric.utils import coalesce


class AMiner(InMemoryDataset):
    r"""The heterogeneous AMiner dataset from the `"metapath2vec: Scalable
    Representation Learning for Heterogeneous Networks"
    <https://ericdongyx.github.io/papers/
    KDD17-dong-chawla-swami-metapath2vec.pdf>`_ paper, consisting of nodes from
    type :obj:`"paper"`, :obj:`"author"` and :obj:`"venue"`.
    Venue categories and author research interests are available as ground
    truth labels for a subset of nodes.

    Args:
        root (str): Root directory where the dataset should be saved.
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.HeteroData` object and returns a
            transformed version. The data object will be transformed before
            every access. (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.HeteroData` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)
    """

    url = 'https://www.dropbox.com/s/1bnz8r7mofx0osf/net_aminer.zip?dl=1'
    y_url = 'https://www.dropbox.com/s/nkocx16rpl4ydde/label.zip?dl=1'

    def __init__(
        self,
        root: str,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        super().__init__(root, transform, pre_transform,
                         force_reload=force_reload)
        self.load(self.processed_paths[0], data_cls=HeteroData)

    @property
    def raw_file_names(self) -> List[str]:
        return [
            'id_author.txt', 'id_conf.txt', 'paper.txt', 'paper_author.txt',
            'paper_conf.txt', 'label'
        ]

    @property
    def processed_file_names(self) -> str:
        return 'data.pt'

    def download(self) -> None:
        fs.rm(self.raw_dir)
        path = download_url(self.url, self.root)
        extract_zip(path, self.root)
        os.rename(osp.join(self.root, 'net_aminer'), self.raw_dir)
        os.unlink(path)
        path = download_url(self.y_url, self.raw_dir)
        extract_zip(path, self.raw_dir)
        os.unlink(path)

    def process(self) -> None:
        import pandas as pd

        data = HeteroData()

        # Get author labels.
        path = osp.join(self.raw_dir, 'id_author.txt')
        author = pd.read_csv(path, sep='\t', names=['idx', 'name'],
                             index_col=1)

        path = osp.join(self.raw_dir, 'label',
                        'googlescholar.8area.author.label.txt')
        df = pd.read_csv(path, sep=' ', names=['name', 'y'])
        df = df.join(author, on='name')

        data['author'].y = torch.from_numpy(df['y'].values) - 1
        data['author'].y_index = torch.from_numpy(df['idx'].values)

        # Get venue labels.
        path = osp.join(self.raw_dir, 'id_conf.txt')
        venue = pd.read_csv(path, sep='\t', names=['idx', 'name'], index_col=1)

        path = osp.join(self.raw_dir, 'label',
                        'googlescholar.8area.venue.label.txt')
        df = pd.read_csv(path, sep=' ', names=['name', 'y'])
        df = df.join(venue, on='name')

        data['venue'].y = torch.from_numpy(df['y'].values) - 1
        data['venue'].y_index = torch.from_numpy(df['idx'].values)

        # Get paper<->author connectivity.
        path = osp.join(self.raw_dir, 'paper_author.txt')
        paper_author = pd.read_csv(path, sep='\t', header=None)
        paper_author = torch.from_numpy(paper_author.values)
        paper_author = paper_author.t().contiguous()
        M, N = int(paper_author[0].max() + 1), int(paper_author[1].max() + 1)
        paper_author = coalesce(paper_author, num_nodes=max(M, N))
        data['paper'].num_nodes = M
        data['author'].num_nodes = N
        data['paper', 'written_by', 'author'].edge_index = paper_author
        data['author', 'writes', 'paper'].edge_index = paper_author.flip([0])

        # Get paper<->venue connectivity.
        path = osp.join(self.raw_dir, 'paper_conf.txt')
        paper_venue = pd.read_csv(path, sep='\t', header=None)
        paper_venue = torch.from_numpy(paper_venue.values)
        paper_venue = paper_venue.t().contiguous()
        M, N = int(paper_venue[0].max() + 1), int(paper_venue[1].max() + 1)
        paper_venue = coalesce(paper_venue, num_nodes=max(M, N))
        data['venue'].num_nodes = N
        data['paper', 'published_in', 'venue'].edge_index = paper_venue
        data['venue', 'publishes', 'paper'].edge_index = paper_venue.flip([0])

        if self.pre_transform is not None:
            data = self.pre_transform(data)

        self.save([data], self.processed_paths[0])