1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
import os
import os.path as osp
from typing import Callable, List, Optional
import torch
from torch_geometric.data import (
HeteroData,
InMemoryDataset,
download_url,
extract_zip,
)
from torch_geometric.io import fs
from torch_geometric.utils import coalesce
class AMiner(InMemoryDataset):
r"""The heterogeneous AMiner dataset from the `"metapath2vec: Scalable
Representation Learning for Heterogeneous Networks"
<https://ericdongyx.github.io/papers/
KDD17-dong-chawla-swami-metapath2vec.pdf>`_ paper, consisting of nodes from
type :obj:`"paper"`, :obj:`"author"` and :obj:`"venue"`.
Venue categories and author research interests are available as ground
truth labels for a subset of nodes.
Args:
root (str): Root directory where the dataset should be saved.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
every access. (default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
"""
url = 'https://www.dropbox.com/s/1bnz8r7mofx0osf/net_aminer.zip?dl=1'
y_url = 'https://www.dropbox.com/s/nkocx16rpl4ydde/label.zip?dl=1'
def __init__(
self,
root: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
super().__init__(root, transform, pre_transform,
force_reload=force_reload)
self.load(self.processed_paths[0], data_cls=HeteroData)
@property
def raw_file_names(self) -> List[str]:
return [
'id_author.txt', 'id_conf.txt', 'paper.txt', 'paper_author.txt',
'paper_conf.txt', 'label'
]
@property
def processed_file_names(self) -> str:
return 'data.pt'
def download(self) -> None:
fs.rm(self.raw_dir)
path = download_url(self.url, self.root)
extract_zip(path, self.root)
os.rename(osp.join(self.root, 'net_aminer'), self.raw_dir)
os.unlink(path)
path = download_url(self.y_url, self.raw_dir)
extract_zip(path, self.raw_dir)
os.unlink(path)
def process(self) -> None:
import pandas as pd
data = HeteroData()
# Get author labels.
path = osp.join(self.raw_dir, 'id_author.txt')
author = pd.read_csv(path, sep='\t', names=['idx', 'name'],
index_col=1)
path = osp.join(self.raw_dir, 'label',
'googlescholar.8area.author.label.txt')
df = pd.read_csv(path, sep=' ', names=['name', 'y'])
df = df.join(author, on='name')
data['author'].y = torch.from_numpy(df['y'].values) - 1
data['author'].y_index = torch.from_numpy(df['idx'].values)
# Get venue labels.
path = osp.join(self.raw_dir, 'id_conf.txt')
venue = pd.read_csv(path, sep='\t', names=['idx', 'name'], index_col=1)
path = osp.join(self.raw_dir, 'label',
'googlescholar.8area.venue.label.txt')
df = pd.read_csv(path, sep=' ', names=['name', 'y'])
df = df.join(venue, on='name')
data['venue'].y = torch.from_numpy(df['y'].values) - 1
data['venue'].y_index = torch.from_numpy(df['idx'].values)
# Get paper<->author connectivity.
path = osp.join(self.raw_dir, 'paper_author.txt')
paper_author = pd.read_csv(path, sep='\t', header=None)
paper_author = torch.from_numpy(paper_author.values)
paper_author = paper_author.t().contiguous()
M, N = int(paper_author[0].max() + 1), int(paper_author[1].max() + 1)
paper_author = coalesce(paper_author, num_nodes=max(M, N))
data['paper'].num_nodes = M
data['author'].num_nodes = N
data['paper', 'written_by', 'author'].edge_index = paper_author
data['author', 'writes', 'paper'].edge_index = paper_author.flip([0])
# Get paper<->venue connectivity.
path = osp.join(self.raw_dir, 'paper_conf.txt')
paper_venue = pd.read_csv(path, sep='\t', header=None)
paper_venue = torch.from_numpy(paper_venue.values)
paper_venue = paper_venue.t().contiguous()
M, N = int(paper_venue[0].max() + 1), int(paper_venue[1].max() + 1)
paper_venue = coalesce(paper_venue, num_nodes=max(M, N))
data['venue'].num_nodes = N
data['paper', 'published_in', 'venue'].edge_index = paper_venue
data['venue', 'publishes', 'paper'].edge_index = paper_venue.flip([0])
if self.pre_transform is not None:
data = self.pre_transform(data)
self.save([data], self.processed_paths[0])
|