File: dblp.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (163 lines) | stat: -rw-r--r-- 5,425 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import os.path as osp
from itertools import product
from typing import Callable, List, Optional

import numpy as np
import torch

from torch_geometric.data import (
    HeteroData,
    InMemoryDataset,
    download_url,
    extract_zip,
)


class DBLP(InMemoryDataset):
    r"""A subset of the DBLP computer science bibliography website, as
    collected in the `"MAGNN: Metapath Aggregated Graph Neural Network for
    Heterogeneous Graph Embedding" <https://arxiv.org/abs/2002.01680>`_ paper.
    DBLP is a heterogeneous graph containing four types of entities - authors
    (4,057 nodes), papers (14,328 nodes), terms (7,723 nodes), and conferences
    (20 nodes).
    The authors are divided into four research areas (database, data mining,
    artificial intelligence, information retrieval).
    Each author is described by a bag-of-words representation of their paper
    keywords.

    Args:
        root (str): Root directory where the dataset should be saved.
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.HeteroData` object and returns a
            transformed version. The data object will be transformed before
            every access. (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.HeteroData` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)

    **STATS:**

    .. list-table::
        :widths: 20 10 10 10
        :header-rows: 1

        * - Node/Edge Type
          - #nodes/#edges
          - #features
          - #classes
        * - Author
          - 4,057
          - 334
          - 4
        * - Paper
          - 14,328
          - 4,231
          -
        * - Term
          - 7,723
          - 50
          -
        * - Conference
          - 20
          - 0
          -
        * - Author-Paper
          - 196,425
          -
          -
        * - Paper-Term
          - 85,810
          -
          -
        * - Conference-Paper
          - 14,328
          -
          -
    """

    url = 'https://www.dropbox.com/s/yh4grpeks87ugr2/DBLP_processed.zip?dl=1'

    def __init__(
        self,
        root: str,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        super().__init__(root, transform, pre_transform,
                         force_reload=force_reload)
        self.load(self.processed_paths[0], data_cls=HeteroData)

    @property
    def raw_file_names(self) -> List[str]:
        return [
            'adjM.npz', 'features_0.npz', 'features_1.npz', 'features_2.npy',
            'labels.npy', 'node_types.npy', 'train_val_test_idx.npz'
        ]

    @property
    def processed_file_names(self) -> str:
        return 'data.pt'

    def download(self) -> None:
        path = download_url(self.url, self.raw_dir)
        extract_zip(path, self.raw_dir)
        os.remove(path)

    def process(self) -> None:
        import scipy.sparse as sp

        data = HeteroData()

        node_types = ['author', 'paper', 'term', 'conference']
        for i, node_type in enumerate(node_types[:2]):
            x = sp.load_npz(osp.join(self.raw_dir, f'features_{i}.npz'))
            data[node_type].x = torch.from_numpy(x.todense()).to(torch.float)

        x = np.load(osp.join(self.raw_dir, 'features_2.npy'))
        data['term'].x = torch.from_numpy(x).to(torch.float)

        node_type_idx = np.load(osp.join(self.raw_dir, 'node_types.npy'))
        node_type_idx = torch.from_numpy(node_type_idx).to(torch.long)
        data['conference'].num_nodes = int((node_type_idx == 3).sum())

        y = np.load(osp.join(self.raw_dir, 'labels.npy'))
        data['author'].y = torch.from_numpy(y).to(torch.long)

        split = np.load(osp.join(self.raw_dir, 'train_val_test_idx.npz'))
        for name in ['train', 'val', 'test']:
            idx = split[f'{name}_idx']
            idx = torch.from_numpy(idx).to(torch.long)
            mask = torch.zeros(data['author'].num_nodes, dtype=torch.bool)
            mask[idx] = True
            data['author'][f'{name}_mask'] = mask

        s = {}
        N_a = data['author'].num_nodes
        N_p = data['paper'].num_nodes
        N_t = data['term'].num_nodes
        N_c = data['conference'].num_nodes
        s['author'] = (0, N_a)
        s['paper'] = (N_a, N_a + N_p)
        s['term'] = (N_a + N_p, N_a + N_p + N_t)
        s['conference'] = (N_a + N_p + N_t, N_a + N_p + N_t + N_c)

        A = sp.load_npz(osp.join(self.raw_dir, 'adjM.npz'))
        for src, dst in product(node_types, node_types):
            A_sub = A[s[src][0]:s[src][1], s[dst][0]:s[dst][1]].tocoo()
            if A_sub.nnz > 0:
                row = torch.from_numpy(A_sub.row).to(torch.long)
                col = torch.from_numpy(A_sub.col).to(torch.long)
                data[src, dst].edge_index = torch.stack([row, col], dim=0)

        if self.pre_transform is not None:
            data = self.pre_transform(data)

        self.save([data], self.processed_paths[0])

    def __repr__(self) -> str:
        return f'{self.__class__.__name__}()'