1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
import logging
import os
import os.path as osp
from collections import Counter
from typing import Any, Callable, List, Optional
import torch
from torch_geometric.data import (
Data,
HeteroData,
InMemoryDataset,
download_url,
extract_tar,
)
from torch_geometric.utils import index_sort
class Entities(InMemoryDataset):
r"""The relational entities networks :obj:`"AIFB"`, :obj:`"MUTAG"`,
:obj:`"BGS"` and :obj:`"AM"` from the `"Modeling Relational Data with Graph
Convolutional Networks" <https://arxiv.org/abs/1703.06103>`_ paper.
Training and test splits are given by node indices.
Args:
root (str): Root directory where the dataset should be saved.
name (str): The name of the dataset (:obj:`"AIFB"`, :obj:`"MUTAG"`,
:obj:`"BGS"`, :obj:`"AM"`).
hetero (bool, optional): If set to :obj:`True`, will save the dataset
as a :class:`~torch_geometric.data.HeteroData` object.
(default: :obj:`False`)
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
**STATS:**
.. list-table::
:widths: 10 10 10 10 10
:header-rows: 1
* - Name
- #nodes
- #edges
- #features
- #classes
* - AIFB
- 8,285
- 58,086
- 0
- 4
* - AM
- 1,666,764
- 11,976,642
- 0
- 11
* - MUTAG
- 23,644
- 148,454
- 0
- 2
* - BGS
- 333,845
- 1,832,398
- 0
- 2
"""
url = 'https://data.dgl.ai/dataset/{}.tgz'
def __init__(
self,
root: str,
name: str,
hetero: bool = False,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
self.name = name.lower()
self.hetero = hetero
assert self.name in ['aifb', 'am', 'mutag', 'bgs']
super().__init__(root, transform, pre_transform,
force_reload=force_reload)
if hetero:
self.load(self.processed_paths[0], data_cls=HeteroData)
else:
self.load(self.processed_paths[0], data_cls=Data)
@property
def raw_dir(self) -> str:
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self) -> str:
return osp.join(self.root, self.name, 'processed')
@property
def num_relations(self) -> int:
return int(self._data.edge_type.max()) + 1 # type: ignore
@property
def num_classes(self) -> int:
return int(self._data.train_y.max()) + 1 # type: ignore
@property
def raw_file_names(self) -> List[str]:
return [
f'{self.name}_stripped.nt.gz',
'completeDataset.tsv',
'trainingSet.tsv',
'testSet.tsv',
]
@property
def processed_file_names(self) -> str:
return 'hetero_data.pt' if self.hetero else 'data.pt'
def download(self) -> None:
path = download_url(self.url.format(self.name), self.root)
extract_tar(path, self.raw_dir)
os.unlink(path)
def process(self) -> None:
import gzip
import pandas as pd
import rdflib as rdf
graph_file, task_file, train_file, test_file = self.raw_paths
with hide_stdout():
g = rdf.Graph()
with gzip.open(graph_file, 'rb') as f:
g.parse(file=f, format='nt') # type: ignore
freq = Counter(g.predicates())
relations = sorted(set(g.predicates()), key=lambda p: -freq.get(p, 0))
subjects = set(g.subjects())
objects = set(g.objects())
nodes = list(subjects.union(objects))
N = len(nodes)
R = 2 * len(relations)
relations_dict = {rel: i for i, rel in enumerate(relations)}
nodes_dict = {str(node): i for i, node in enumerate(nodes)}
edges = []
for s, p, o in g.triples((None, None, None)):
src, dst = nodes_dict[str(s)], nodes_dict[str(o)]
rel = relations_dict[p]
edges.append([src, dst, 2 * rel])
edges.append([dst, src, 2 * rel + 1])
edge = torch.tensor(edges, dtype=torch.long).t().contiguous()
_, perm = index_sort(N * R * edge[0] + R * edge[1] + edge[2])
edge = edge[:, perm]
edge_index, edge_type = edge[:2], edge[2]
if self.name == 'am':
label_header = 'label_cateogory'
nodes_header = 'proxy'
elif self.name == 'aifb':
label_header = 'label_affiliation'
nodes_header = 'person'
elif self.name == 'mutag':
label_header = 'label_mutagenic'
nodes_header = 'bond'
elif self.name == 'bgs':
label_header = 'label_lithogenesis'
nodes_header = 'rock'
labels_df = pd.read_csv(task_file, sep='\t')
labels_set = set(labels_df[label_header].values.tolist())
labels_dict = {lab: i for i, lab in enumerate(list(labels_set))}
train_labels_df = pd.read_csv(train_file, sep='\t')
train_indices, train_labels = [], []
for nod, lab in zip(train_labels_df[nodes_header].values,
train_labels_df[label_header].values):
train_indices.append(nodes_dict[nod])
train_labels.append(labels_dict[lab])
train_idx = torch.tensor(train_indices, dtype=torch.long)
train_y = torch.tensor(train_labels, dtype=torch.long)
test_labels_df = pd.read_csv(test_file, sep='\t')
test_indices, test_labels = [], []
for nod, lab in zip(test_labels_df[nodes_header].values,
test_labels_df[label_header].values):
test_indices.append(nodes_dict[nod])
test_labels.append(labels_dict[lab])
test_idx = torch.tensor(test_indices, dtype=torch.long)
test_y = torch.tensor(test_labels, dtype=torch.long)
data = Data(edge_index=edge_index, edge_type=edge_type,
train_idx=train_idx, train_y=train_y, test_idx=test_idx,
test_y=test_y, num_nodes=N)
if self.hetero:
data = data.to_heterogeneous(node_type_names=['v'])
self.save([data], self.processed_paths[0])
def __repr__(self) -> str:
return f'{self.name.upper()}{self.__class__.__name__}()'
class hide_stdout:
def __enter__(self) -> None:
self.level = logging.getLogger().level
logging.getLogger().setLevel(logging.ERROR)
def __exit__(self, *args: Any) -> None:
logging.getLogger().setLevel(self.level)
|